Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Observation of strong NO<sub>x</sub> release over Qiyi Glacier, China

View through CrossRef
Abstract. NOx is released from sunlit snowpack surfaces, and this significantly influences the oxidizing capacity of the clean boundary layer atmosphere and the potential interpretation on the historical atmospheric composition recorded in the ice core. The Tibetan Plateau is an important snow-covered region in the northern midlatitudes, with strong solar radiation and relatively high NO3− in snow/ice. Released NOx on the glacier surface of the Tibetan Plateau should have a higher concentration than in Antarctic and Arctic regions. To verify this hypothesis, field observations were carried out at 4600 m asl in Qiyi Glacier in late August 2004. In late August, the surface ultraviolet-B (UVB) radiation level at 4600 m asl in Qiyi Glacier reached >4.5 W/m2 and was increased by the strong reflection of snow/ice and clouds against the sun, and strengthened by the topographical effect. The concentrations of NO3− and NH4+ in water from melting snow were hardly detected, but the average concentration (±1σ) of NO3− in snow samples was 8.7 ± 2.7 μmol/L. Strong correlations were observed between NOx (NO2) mixing ratios and UVB radiation levels in the Tibetan glacier. Vertical experiments revealed a negative gradient of NOx (NO2) mixing ratios from the glacier snow surface to a height of 30 cm. As a result of the high levels of UV radiation and high NO3− concentrations in snow/ice, the mixing ratios of NOx released by fresh snow in Qiyi Glacier in late August reached to several parts per billion (ppbv) and were approximately 1 order of magnitude higher than those observed in polar regions. This observation provides direct evidence to support the research hypothesis and confirms that the release of high concentrations of NOx in the boundary layer of highland glaciers and snow surfaces.
Title: Observation of strong NO<sub>x</sub> release over Qiyi Glacier, China
Description:
Abstract.
NOx is released from sunlit snowpack surfaces, and this significantly influences the oxidizing capacity of the clean boundary layer atmosphere and the potential interpretation on the historical atmospheric composition recorded in the ice core.
The Tibetan Plateau is an important snow-covered region in the northern midlatitudes, with strong solar radiation and relatively high NO3− in snow/ice.
Released NOx on the glacier surface of the Tibetan Plateau should have a higher concentration than in Antarctic and Arctic regions.
To verify this hypothesis, field observations were carried out at 4600 m asl in Qiyi Glacier in late August 2004.
In late August, the surface ultraviolet-B (UVB) radiation level at 4600 m asl in Qiyi Glacier reached >4.
5 W/m2 and was increased by the strong reflection of snow/ice and clouds against the sun, and strengthened by the topographical effect.
The concentrations of NO3− and NH4+ in water from melting snow were hardly detected, but the average concentration (±1σ) of NO3− in snow samples was 8.
7 ± 2.
7 μmol/L.
Strong correlations were observed between NOx (NO2) mixing ratios and UVB radiation levels in the Tibetan glacier.
Vertical experiments revealed a negative gradient of NOx (NO2) mixing ratios from the glacier snow surface to a height of 30 cm.
As a result of the high levels of UV radiation and high NO3− concentrations in snow/ice, the mixing ratios of NOx released by fresh snow in Qiyi Glacier in late August reached to several parts per billion (ppbv) and were approximately 1 order of magnitude higher than those observed in polar regions.
This observation provides direct evidence to support the research hypothesis and confirms that the release of high concentrations of NOx in the boundary layer of highland glaciers and snow surfaces.

Related Results

L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
&nbsp; <p>&Nu;ί&kappa;&omicron;&sigmaf; &Omicron;&iota;&kappa;&omicron;&nu;&omicron;&mu;ί&delta;&eta;&sigmaf;</...
Cometary Physics Laboratory: spectrophotometric experiments
Cometary Physics Laboratory: spectrophotometric experiments
&lt;p&gt;&lt;strong&gt;&lt;span dir=&quot;ltr&quot; role=&quot;presentation&quot;&gt;1. Introduction&lt;/span&gt;&lt;/strong&...
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
<span style="font-size: 11pt; color: black; font-family: 'Times New Roman','serif'">&Pi;&Eta;&Lambda;&Iota;&Nu;&Alpha; &Iota;&Gamma;&Delta...
Morphometry of an hexagonal pit crater in Pavonis Mons, Mars
Morphometry of an hexagonal pit crater in Pavonis Mons, Mars
&lt;p&gt;&lt;strong&gt;Introduction:&lt;/strong&gt;&lt;/p&gt; &lt;p&gt;Pit craters are peculiar depressions found in almost every terrestria...
Two empirical double-corner frequency source spectra and their source physics implications
Two empirical double-corner frequency source spectra and their source physics implications
&lt;p&gt;The best-known part of Brune&amp;#8217;s (1970) spectral model is the single corner&amp;#160;&lt;em&gt;f&lt;sup&gt;&amp;#8211;2&amp...
Ballistic landslides on comet 67P/Churyumov&#8211;Gerasimenko
Ballistic landslides on comet 67P/Churyumov&#8211;Gerasimenko
&lt;p&gt;&lt;strong&gt;Introduction:&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;The slow ejecta (i.e., with velocity lower than escape velocity) and l...
Un manoscritto equivocato del copista santo Theophilos († 1548)
Un manoscritto equivocato del copista santo Theophilos († 1548)
<p><font size="3"><span class="A1"><span style="font-family: 'Times New Roman','serif'">&Epsilon;&Nu;&Alpha; &Lambda;&Alpha;&Nu;&...

Back to Top