Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Resistance Training Alleviates Skeletal Muscle Atrophy in Rats Exposed to Hypoxia by inhibiting Autophagy Mediated by Acetyl-FoxO1

View through CrossRef
Abstract Background: Skeletal muscle atrophy induced by hypoxia could affect the physical fitness and training effect of the athletes in the rapid altitude, and also affect the production and life of the general public. Resistance training in a hypoxic environment could effectively alleviate the occurrence of muscular atrophy. Whether autophagy lysosomal pathway, as an important proteolysis pathway, is involved in this process, and whether FoxO1, the key gene of atrophy, plays a role by regulating autophagy is unclear. Methods: Male Sprague-Dawley (SD) rats were randomly divided into normoxic control group (group C), normoxic resistance-training group (group R), hypoxic control group (group H), and hypoxic resistance-training group (group HR). The H and HR groups were exposed to 12.4% oxygen for four weeks. The R and HR groups underwent incremental loaded training by climbing a ladder every other day for four weeks. Results: Compared to parameters in group H, resistance training increased lean body mass (LBM) and wet weight and decreased the expression of atrogin1 of the extensor digitorum longus (EDL) after four weeks ( P <0.05). Resistance training decreased the levels of FoxO1 and Ac-FoxO1 and the extent of their localization in the nucleus and cytoplasm, respectively ( P <0.05), as well as the LC3II/LC3I ratio, the integrated optical density (IOD) of LC3 and the levels of autophagy-related gene 7 (Atg7), and elevated the levels of sequestosome 1 (SQSTM1/p62) ( P <0.05). Most differentially expressed autophagy-related genes (ATGs) interacted with FoxO1, and the functions of these ATGs were mainly enriched in the early autophagy phase. Conclusions: Our findings demonstrate that resistance training lowers the levels of both nuclear FoxO1 and cytoplasmic Ac-FoxO1, as well as reduced autophagic flux in the EDL of rats exposed to hypoxia.
Title: Resistance Training Alleviates Skeletal Muscle Atrophy in Rats Exposed to Hypoxia by inhibiting Autophagy Mediated by Acetyl-FoxO1
Description:
Abstract Background: Skeletal muscle atrophy induced by hypoxia could affect the physical fitness and training effect of the athletes in the rapid altitude, and also affect the production and life of the general public.
Resistance training in a hypoxic environment could effectively alleviate the occurrence of muscular atrophy.
Whether autophagy lysosomal pathway, as an important proteolysis pathway, is involved in this process, and whether FoxO1, the key gene of atrophy, plays a role by regulating autophagy is unclear.
Methods: Male Sprague-Dawley (SD) rats were randomly divided into normoxic control group (group C), normoxic resistance-training group (group R), hypoxic control group (group H), and hypoxic resistance-training group (group HR).
The H and HR groups were exposed to 12.
4% oxygen for four weeks.
The R and HR groups underwent incremental loaded training by climbing a ladder every other day for four weeks.
Results: Compared to parameters in group H, resistance training increased lean body mass (LBM) and wet weight and decreased the expression of atrogin1 of the extensor digitorum longus (EDL) after four weeks ( P <0.
05).
Resistance training decreased the levels of FoxO1 and Ac-FoxO1 and the extent of their localization in the nucleus and cytoplasm, respectively ( P <0.
05), as well as the LC3II/LC3I ratio, the integrated optical density (IOD) of LC3 and the levels of autophagy-related gene 7 (Atg7), and elevated the levels of sequestosome 1 (SQSTM1/p62) ( P <0.
05).
Most differentially expressed autophagy-related genes (ATGs) interacted with FoxO1, and the functions of these ATGs were mainly enriched in the early autophagy phase.
Conclusions: Our findings demonstrate that resistance training lowers the levels of both nuclear FoxO1 and cytoplasmic Ac-FoxO1, as well as reduced autophagic flux in the EDL of rats exposed to hypoxia.

Related Results

Poster 247: Muscle ERRγ Overexpression Mitigates the Muscle Atrophy after ACL injury
Poster 247: Muscle ERRγ Overexpression Mitigates the Muscle Atrophy after ACL injury
Objectives: Anterior cruciate ligament (ACL) reconstruction is the 6th most common orthopedic procedure performed in the United States (1,2). There is substantial evidence to sugge...
Abstract 1721: FOXO1, a downstream substrate of AKT, function as tumor suppressor in HCC carcinogenesis
Abstract 1721: FOXO1, a downstream substrate of AKT, function as tumor suppressor in HCC carcinogenesis
Abstract Hepatocellular carcinoma (HCC) represents the fifth most common tumor types in the world and the third leading cause of cancer-related death. However, the s...
1642-P: Deferoxamine Prevented Dexamethasone-Induced Muscle Atrophy through Inhibition of KLF15 and FOXO3a
1642-P: Deferoxamine Prevented Dexamethasone-Induced Muscle Atrophy through Inhibition of KLF15 and FOXO3a
Aim/hypothesis: Muscle atrophy is caused by various factors such as aging, a lack of exercise, and diseases. During these events, the balance between protein synthesis and degradat...
Fibroblast growth factor 21 regulates neuromuscular junction innervation through HDAC4 in denervation-induced skeletal muscle atrophy
Fibroblast growth factor 21 regulates neuromuscular junction innervation through HDAC4 in denervation-induced skeletal muscle atrophy
AbstractSkeletal muscles undergo atrophy in response to denervation and neuromuscular diseases. Understanding the mechanisms by which denervation drives muscle atrophy is crucial f...
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
Targeting Autophagy As a Therapeutic Strategy in Acute Myeloid Leukemia
Targeting Autophagy As a Therapeutic Strategy in Acute Myeloid Leukemia
Abstract Introduction: Autophagy is a process whereby cells digest their own organelles in conditions of stress, such as low nutrient concentration, hypoxia or expos...
5. All That glitters is not gold
5. All That glitters is not gold
Abstract Introduction Inflammatory muscle disease is a rare but well-recognised manifestation of systemic vasculitis. It can pre...
Exogenous Pyruvate Is Required for Cell Adaption to Chronic Hypoxia
Exogenous Pyruvate Is Required for Cell Adaption to Chronic Hypoxia
Hypoxia is a common feature in solid tumors due to the imbalance between the poor development of vascularization and rapid proliferation of tumor cells. Tumor hypoxia is associated...

Back to Top