Javascript must be enabled to continue!
Additive manufacturing: a bespoke solution for drug delivery
View through CrossRef
Purpose
Additive manufacturing (AM), also known as three-dimensional (3D) printing technology, has been used in the health-care industry for over two decades. It is in high demand in the health-care industry due to its strength to manufacture custom-designed and personalized 3D constructs. Recently, AM technologies are being explored to develop personalized drug delivery systems, such as personalized oral dosages, implants and others due to their potential to design and develop systems with complex geometry and programmed controlled release profile. Furthermore, in 2015, the US Food and Drug Administration approved the first AM medication, SpritamĀ® (Apprecia Pharmaceuticals) which has led to tremendous interest in exploring this technology as a bespoke solution for patient-specific drug delivery systems. The purpose of this study is to provide a comprehensive overview of AM technologies applied to the development of personalized drug delivery systems, including an analysis of the commercial status of AM based drugs and delivery devices.
Design/methodology/approach
This review paper provides a detailed understanding of how AM technologies are used to develop personalized drug delivery systems. Different AM technologies and how these technologies can be chosen for a specific drug delivery system are discussed. Different types of materials used to manufacture personalized drug delivery systems are also discussed here. Furthermore, recent preclinical and clinical trials are discussed. The challenges and future perceptions of personalized medicine and the clinical use of these systems are also discussed.
Findings
Substantial works are ongoing to develop personalized medicine using AM technologies. Understanding the regulatory requirements is needed to establish this area as a point-of-care solution for patients. Furthermore, scientists, engineers and regulatory agencies need to work closely to successfully translate the research efforts to clinics.
Originality/value
This review paper highlights the recent efforts of AM-based technologies in the field of personalized drug delivery systems with an insight into the possible future direction.
Title: Additive manufacturing: a bespoke solution for drug delivery
Description:
Purpose
Additive manufacturing (AM), also known as three-dimensional (3D) printing technology, has been used in the health-care industry for over two decades.
It is in high demand in the health-care industry due to its strength to manufacture custom-designed and personalized 3D constructs.
Recently, AM technologies are being explored to develop personalized drug delivery systems, such as personalized oral dosages, implants and others due to their potential to design and develop systems with complex geometry and programmed controlled release profile.
Furthermore, in 2015, the US Food and Drug Administration approved the first AM medication, SpritamĀ® (Apprecia Pharmaceuticals) which has led to tremendous interest in exploring this technology as a bespoke solution for patient-specific drug delivery systems.
The purpose of this study is to provide a comprehensive overview of AM technologies applied to the development of personalized drug delivery systems, including an analysis of the commercial status of AM based drugs and delivery devices.
Design/methodology/approach
This review paper provides a detailed understanding of how AM technologies are used to develop personalized drug delivery systems.
Different AM technologies and how these technologies can be chosen for a specific drug delivery system are discussed.
Different types of materials used to manufacture personalized drug delivery systems are also discussed here.
Furthermore, recent preclinical and clinical trials are discussed.
The challenges and future perceptions of personalized medicine and the clinical use of these systems are also discussed.
Findings
Substantial works are ongoing to develop personalized medicine using AM technologies.
Understanding the regulatory requirements is needed to establish this area as a point-of-care solution for patients.
Furthermore, scientists, engineers and regulatory agencies need to work closely to successfully translate the research efforts to clinics.
Originality/value
This review paper highlights the recent efforts of AM-based technologies in the field of personalized drug delivery systems with an insight into the possible future direction.
Related Results
Unveiling the Environmental and Economic Implications of Additive Manufacturing on Inbound Transportation
Unveiling the Environmental and Economic Implications of Additive Manufacturing on Inbound Transportation
This studyaims to investigate the impact of additive manufacturing (AM) on the sustainability of inbound transportation. By combining insights from existing litera...
The Promise of Exosomes as Drug Delivery Systems
The Promise of Exosomes as Drug Delivery Systems
Exosomes are small extracellular vesicles that play a role in cell-to-cell communication by transferring bioactive molecules such as proteins, nucleic acids, and lipids between cel...
A Mobile Additive Manufacturing Robot Framework for Smart Manufacturing Systems
A Mobile Additive Manufacturing Robot Framework for Smart Manufacturing Systems
Abstract
Recent technological innovations in the areas of additive manufacturing and collaborative robotics have paved the way toward realizing the concept of on-dem...
Controlled Drug Delivery Systems
Controlled Drug Delivery Systems
In most forms of drug delivery, spatial localization and duration of drug concentration are constrained by organ physiology and metabolism. For example, drugs administered orally w...
Advanced Strategy and Future Perspectives in Drug Delivery System
Advanced Strategy and Future Perspectives in Drug Delivery System
One of the main issues with the drug delivery system is delivering the drug to specific target site with anticipated concentration to produce a desired therapeutic potential of the...
EDITORIAL: PIONEERING THE FUTURE OF HEALTHCARE THROUGH ADVANCES IN NOVEL DRUG DELIVERY SYSTEMS
EDITORIAL: PIONEERING THE FUTURE OF HEALTHCARE THROUGH ADVANCES IN NOVEL DRUG DELIVERY SYSTEMS
With great delight and anticipation, I extend my heartfelt greetings to you as we commence a new venture with the latest release of the International Journal of Pharmacy and Integr...
Measure Additive Manufacturing for Sustainable Manufacturing
Measure Additive Manufacturing for Sustainable Manufacturing
Additive manufacturing technologies are still brand new in industrial production. Although It has widely been used in prototypes development, either low or very low scale productio...
Procedure for Western blot v1
Procedure for Western blot v1
Goal: This document has the objective of standardizing the protocol for Western blot. This technique allows the detection of specific proteins separated on polyacrylamide gel and t...

