Javascript must be enabled to continue!
Flexural Performance of a New Hybrid Basalt-polypropylene Fiber-reinforced Concrete Oriented to Concrete Pipelines
View through CrossRef
The bending performance of a basalt-polypropylene fiber-reinforced concrete (HBPFRC) was characterized by testing 24 400×100×100 mm3 prismatic specimens in a four-point bending test JSCE-SF4 configuration. The type and content of both fibers was varied in order to guarantee different target levels of post-cracking flexural performance. The results evidenced that mono-micro basalt fiber reinforced concrete (BFRC) allows the increase of the flexural strength (pre-cracking stage), while macro polypropylene fiber reinforced concrete can effectively improve both bearing capacity and ductility of the composite for a wide crack width range. Compared with the plain concrete specimens, flexural toughness and equivalent flexural strength of macro polypropylene fiber-reinforced concrete (PPFRC) and the hybrid fiber-reinforced concrete (HFRC) increased by 3.7~7.1 times and 10%~42.5%, respectively. From both technical and economic points of view, the optimal mass ratio of basalt fiber to polypropylene fiber resulted to be 1:2, with a total content of 6 kg/m3. This HFRC is seen as a suitable material to be used in sewerage pipes where cracking control (crack formation and crack width control) is of paramount importance to guarantee the durability and functionality of the pipeline as well as the ductility of the system in case of local failures.
Title: Flexural Performance of a New Hybrid Basalt-polypropylene Fiber-reinforced Concrete Oriented to Concrete Pipelines
Description:
The bending performance of a basalt-polypropylene fiber-reinforced concrete (HBPFRC) was characterized by testing 24 400×100×100 mm3 prismatic specimens in a four-point bending test JSCE-SF4 configuration.
The type and content of both fibers was varied in order to guarantee different target levels of post-cracking flexural performance.
The results evidenced that mono-micro basalt fiber reinforced concrete (BFRC) allows the increase of the flexural strength (pre-cracking stage), while macro polypropylene fiber reinforced concrete can effectively improve both bearing capacity and ductility of the composite for a wide crack width range.
Compared with the plain concrete specimens, flexural toughness and equivalent flexural strength of macro polypropylene fiber-reinforced concrete (PPFRC) and the hybrid fiber-reinforced concrete (HFRC) increased by 3.
7~7.
1 times and 10%~42.
5%, respectively.
From both technical and economic points of view, the optimal mass ratio of basalt fiber to polypropylene fiber resulted to be 1:2, with a total content of 6 kg/m3.
This HFRC is seen as a suitable material to be used in sewerage pipes where cracking control (crack formation and crack width control) is of paramount importance to guarantee the durability and functionality of the pipeline as well as the ductility of the system in case of local failures.
Related Results
BASALT RESOURCES IN LOPBURI PROVINCE: A POTENTIAL RAW MATERIAL FOR BASALT FIBER PRODUCTION
BASALT RESOURCES IN LOPBURI PROVINCE: A POTENTIAL RAW MATERIAL FOR BASALT FIBER PRODUCTION
Apart from a good host of ruby and sapphire, basalts and basaltic rocks can be used for other purposes, especially as producing construction material and making basalt fibers. Basa...
Lithostratigraphy of the southeastern part of the Ethiopian flood basalt province
Lithostratigraphy of the southeastern part of the Ethiopian flood basalt province
Abstract
Fully preserved continental flood basalt stratigraphy provides a perfect window to comprehend the temporal evolution and geological history of plume-related volcan...
Study on antifreeze Properties and pore structure of Basalt Fiber Reinforced Concrete
Study on antifreeze Properties and pore structure of Basalt Fiber Reinforced Concrete
Abstract
We designed basalt fiber concrete with a volume content of 0.05%, 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, 0.35%. Through the mass loss rate and dynamic modulus loss...
Strength characteristics of fiber-reinforced light shotcrete
Strength characteristics of fiber-reinforced light shotcrete
The article presents the regularities of the flexural and compressive strength variation, as well as the energy intensity of destruction of light heat-shielding vermiculite concret...
Chemical Durability and Mechanical Properties of Alkali-proof Basalt Fiber and its Reinforced Epoxy Composites
Chemical Durability and Mechanical Properties of Alkali-proof Basalt Fiber and its Reinforced Epoxy Composites
The chemical durability and mechanical properties of a kind of alkali-proof basalt fiber BF-CMD-01 and its reinforced F46 epoxy resin matrix composites are presented. The basalt fi...
Investigation on mechanical properties and failure mechanisms of basalt fiber reinforced aluminum matrix composites under different loading conditions
Investigation on mechanical properties and failure mechanisms of basalt fiber reinforced aluminum matrix composites under different loading conditions
Basalt fiber reinforced aluminum matrix composites with different fiber contents (i.e. 0 wt%, 10 wt%, 30 wt% and 50 wt%) were prepared by hot-press sintering. Microstructure analys...
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
Physico-Mechanical Behaviors of Chemically Treated Natural Fibers Reinforced Hybrid Polypropylene Composites
The goal of current research is to replace synthetic materials with natural, biodegradable, and renewable ones. Natural fiber composites are extensively studied due to their unique...
Investigation of the Performance of Basalt Rebar’s as Reinforcement in Concrete Beam
Investigation of the Performance of Basalt Rebar’s as Reinforcement in Concrete Beam
Abstract
Now a day’s concrete is the main component in the construction. The tensile strength, ductility, and crack resistance of plain concrete are low. Fiber rebar...


