Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Application Research on Fault Diagnosis of the Filter Unit Based on Intelligent Algorithm of GA and WNN

View through CrossRef
This paper focuses on the potential of GA algorithm for adaptive random global search, and WNN resolution as well as the ability of fault tolerance to build a multi intelligent algorithm based on the GA-WNN model using the filter unit of analog circuit for fault diagnosis. Construction of GA-WNN model was divided into two stages; in the first stage GA was used to optimize the initial weights, threshold, expansion factor and translation factor of WNN structure; while in the second stage, initially, based on WNN training and learning, global optimal solution was obtained. In the process of using analog output signal by using wavelet decomposition, the absolute value of coefficient of each frequency band sequence was obtained along with the energy characteristics of the cross joint, with a combination of feature vectors as the input of the neural network. Through the pretreatment method, in order to reduce the neural network input, neural grid size of neurons was reduced in each layer and the convergence speed of neural network was increased. The experimental results show that the method can diagnose single and multiple soft faults of the circuit, with high speed and high precision.
Title: Application Research on Fault Diagnosis of the Filter Unit Based on Intelligent Algorithm of GA and WNN
Description:
This paper focuses on the potential of GA algorithm for adaptive random global search, and WNN resolution as well as the ability of fault tolerance to build a multi intelligent algorithm based on the GA-WNN model using the filter unit of analog circuit for fault diagnosis.
Construction of GA-WNN model was divided into two stages; in the first stage GA was used to optimize the initial weights, threshold, expansion factor and translation factor of WNN structure; while in the second stage, initially, based on WNN training and learning, global optimal solution was obtained.
In the process of using analog output signal by using wavelet decomposition, the absolute value of coefficient of each frequency band sequence was obtained along with the energy characteristics of the cross joint, with a combination of feature vectors as the input of the neural network.
Through the pretreatment method, in order to reduce the neural network input, neural grid size of neurons was reduced in each layer and the convergence speed of neural network was increased.
The experimental results show that the method can diagnose single and multiple soft faults of the circuit, with high speed and high precision.

Related Results

Integration Techniques of Fault Detection and Isolation Using Interval Observers
Integration Techniques of Fault Detection and Isolation Using Interval Observers
An interval observer has been illustrated to be a suitable approach to detect and isolate faults affecting complex dynamical industrial systems. Concerning fault detection, interv...
Decomposition and Evolution of Intracontinental Strike‐Slip Faults in Eastern Tibetan Plateau
Decomposition and Evolution of Intracontinental Strike‐Slip Faults in Eastern Tibetan Plateau
Abstract:Little attention had been paid to the intracontinental strike‐slip faults of the Tibetan Plateau. Since the discovery of the Longriba fault using re‐measured GPS data in 2...
Data-driven Fault Diagnosis for Cyber-Physical Systems
Data-driven Fault Diagnosis for Cyber-Physical Systems
The concept of Industry 4.0 uses cyber-physical systems and the Internet of Things to create "smart factories" that enable automated and connected production. However, the complex ...
Low-temperature thermochronology of fault zones
Low-temperature thermochronology of fault zones
<p>Thermal signatures as well as timing of fault motions can be constrained by thermochronological analyses of fault-zone rocks (e.g., Tagami, 2012, 2019).&#1...
Structural Characteristics and Evolution Mechanism of Paleogene Faults in the Central Dongying Depression, Bohai Bay Basin
Structural Characteristics and Evolution Mechanism of Paleogene Faults in the Central Dongying Depression, Bohai Bay Basin
Abstract This study used the growth index, fault activity rate and fault distance burial depth curve methods to analyze the characteristics of fault activity in the central...
Research on engine multiple fault diagnosis method based on cascade model
Research on engine multiple fault diagnosis method based on cascade model
The engine is the core component of the power system, and the health status of the components of the engine is very important for the normal operation of the power system. Most of ...
Short-term Forecast of Multiple Loads in Integrated Energy System Based on IPSO-WNN
Short-term Forecast of Multiple Loads in Integrated Energy System Based on IPSO-WNN
Accurate short-term energy load forecasting has a considerable influence on the economic scheduling and optimal operation of integrated energy system. This study proposes an improv...
A Novel Integrated Fault Diagnosis Method Based on Digital Twin
A Novel Integrated Fault Diagnosis Method Based on Digital Twin
Abstract Fault diagnosis plays a crucial role in the actual production activities of enterprises. In recent years, with the development and popularization of Internet of Th...

Back to Top