Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Effects of interface states and temperature on the C-V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors

View through CrossRef
The impact of states at the insulator/AlGaN interface on the capacitance-voltage (C-V) characteristics of a metal/insulator/AlGaN/GaN heterostructure (MISH) capacitor was examined using a numerical solver of a Poisson equation and taking into account the electron emission rate from the interface states. A parallel shift of the theoretical C-V curves, instead of the typical change in their slope, was found for a MISH device with a 25-nm-thick AlGaN layer when the SiNx/AlGaN interface state density Dit(E) was increased. We attribute this behavior to the position of the Fermi level at the SiNx/AlGaN interface below the AlGaN valence band maximum when the gate bias is near the threshold voltage and to the insensitivity of the deep interface traps to the gate voltage due to a low emission rate. A typical stretch out of the theoretical C-V curve was obtained only for a MISH structure with a very thin AlGaN layer at 300 °C. We analyzed the experimental C-V characteristics from a SiNx/Al2O3/AlGaN/GaN structure measured at room temperature and 300 °C, and extracted a part of Dit(E). The relatively low Dit (∼1011 eV−1 cm−2) in the upper bandgap indicates that the SiNx/Al2O3 bilayer is applicable as a gate insulator and as an AlGaN surface passivant in high-temperature, high-power AlGaN/GaN-based devices.
Title: Effects of interface states and temperature on the C-V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors
Description:
The impact of states at the insulator/AlGaN interface on the capacitance-voltage (C-V) characteristics of a metal/insulator/AlGaN/GaN heterostructure (MISH) capacitor was examined using a numerical solver of a Poisson equation and taking into account the electron emission rate from the interface states.
A parallel shift of the theoretical C-V curves, instead of the typical change in their slope, was found for a MISH device with a 25-nm-thick AlGaN layer when the SiNx/AlGaN interface state density Dit(E) was increased.
We attribute this behavior to the position of the Fermi level at the SiNx/AlGaN interface below the AlGaN valence band maximum when the gate bias is near the threshold voltage and to the insensitivity of the deep interface traps to the gate voltage due to a low emission rate.
A typical stretch out of the theoretical C-V curve was obtained only for a MISH structure with a very thin AlGaN layer at 300 °C.
We analyzed the experimental C-V characteristics from a SiNx/Al2O3/AlGaN/GaN structure measured at room temperature and 300 °C, and extracted a part of Dit(E).
The relatively low Dit (∼1011 eV−1 cm−2) in the upper bandgap indicates that the SiNx/Al2O3 bilayer is applicable as a gate insulator and as an AlGaN surface passivant in high-temperature, high-power AlGaN/GaN-based devices.

Related Results

Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN g...
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Systematic studies were performed on the influence of different cap layers of i-GaN, n-GaN, p-GaN and InGaN on AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on sapphi...
Carrier Localization at Atomic‐Scale Compositional Fluctuations in Single AlGaN Nanowires with Nano‐Cathodoluminescence
Carrier Localization at Atomic‐Scale Compositional Fluctuations in Single AlGaN Nanowires with Nano‐Cathodoluminescence
Considerable interest has been generated to develop highly efficient deep ultraviolet (DUV) emitters using AlGaN‐based alloys with direct bandgaps between 3.4 – 6.1 eV for a broad ...
Advanced AlGaN/GaN HEMT technology, design, fabrication and characterization
Advanced AlGaN/GaN HEMT technology, design, fabrication and characterization
Nowadays, the microelectronics technology is based on the mature and very well established silicon (Si) technology. However, Si exhibits some important limitations regarding its vo...
Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer
Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer
Semi-insulating (SI) GaN layers were grown on 4H-SiC substrates by inserting an AlGaN layer between the AlN buffer and the GaN layer. Secondary ion mass spectroscopy measurements s...
Base Transit Time in Abrupt GaN/InGaN/GaN and AlGaN/GaN/AlGaN HBTs
Base Transit Time in Abrupt GaN/InGaN/GaN and AlGaN/GaN/AlGaN HBTs
AbstractBase transit time, τb, in abrupt npn GaN/InGaN/GaN and AlGaN/GaN/AlGaN double heterojunction bipolar transistors (DHBTs) is reported. Base transit time strongly depends not...
Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes
Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes
AbstractWe report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temp...

Back to Top