Javascript must be enabled to continue!
Cybersecurity Comparison of Brain-Based Automotive Electrical and Electronic Architectures
View through CrossRef
Modern autonomous vehicles with an electric/electronic (E/E) architecture represent the next big step in the automation and evolution of smart and self-driving vehicles. This technology is of significant interest nowadays and humans are currently witnessing the development of the different levels of automation for their vehicles. According to recent demand, the components of smart vehicles are centrally or zonally connected, as well as connected to clouds to ensure the seamless automation of driving functions. This necessity has a downside, as it makes the system vulnerable to malicious attacks from hackers with unethical motives. To ensure the control, safety, and security of smart vehicles, attaining and upholding automotive cybersecurity standards is inevitable. The ISO/SAE 21434 Road vehicle—Cybersecurity engineering standard document was published in 2021 and can be considered the Bible of automotive cybersecurity. In this paper, a comparison between four different E/E architectures was made based on the aforementioned standard. One of them is the traditional distributed architecture with many electronic control units (ECUs). The other three architectures consist of centralized or zonally distributed high-performance computers (HPCs). As the complexity of autonomous E/E systems are on the rise, the traditional distributive method is compared against the HPC (brain)-based architectures to visualize a comparative scenario between the architectures. The authors of this paper analyzed the threats and damage scenarios of the architectures using the ISO/SAE 21434 standard, “Microsoft Threat Analysis Tool - STRIDE”, TARA, and “Ansys Medini Analyze”. Security controls are recommended to mitigate the threats and risks in all of these studied architectures. This work attempted to mitigate the gap in the scholarly literature by creating a comparative image of the E/E architectures on a generalized level. The exploratory method of this research provides the reader with knowledge on four different architecture types, their fundamental properties, advantages, and disadvantages along with a general overview of the threats and vulnerabilities associated with each in light of the ISO/SAE 21434 standard. The improvement possibilities of the studied architectures are provided and their advantages and disadvantages are highlighted herein.
Title: Cybersecurity Comparison of Brain-Based Automotive Electrical and Electronic Architectures
Description:
Modern autonomous vehicles with an electric/electronic (E/E) architecture represent the next big step in the automation and evolution of smart and self-driving vehicles.
This technology is of significant interest nowadays and humans are currently witnessing the development of the different levels of automation for their vehicles.
According to recent demand, the components of smart vehicles are centrally or zonally connected, as well as connected to clouds to ensure the seamless automation of driving functions.
This necessity has a downside, as it makes the system vulnerable to malicious attacks from hackers with unethical motives.
To ensure the control, safety, and security of smart vehicles, attaining and upholding automotive cybersecurity standards is inevitable.
The ISO/SAE 21434 Road vehicle—Cybersecurity engineering standard document was published in 2021 and can be considered the Bible of automotive cybersecurity.
In this paper, a comparison between four different E/E architectures was made based on the aforementioned standard.
One of them is the traditional distributed architecture with many electronic control units (ECUs).
The other three architectures consist of centralized or zonally distributed high-performance computers (HPCs).
As the complexity of autonomous E/E systems are on the rise, the traditional distributive method is compared against the HPC (brain)-based architectures to visualize a comparative scenario between the architectures.
The authors of this paper analyzed the threats and damage scenarios of the architectures using the ISO/SAE 21434 standard, “Microsoft Threat Analysis Tool - STRIDE”, TARA, and “Ansys Medini Analyze”.
Security controls are recommended to mitigate the threats and risks in all of these studied architectures.
This work attempted to mitigate the gap in the scholarly literature by creating a comparative image of the E/E architectures on a generalized level.
The exploratory method of this research provides the reader with knowledge on four different architecture types, their fundamental properties, advantages, and disadvantages along with a general overview of the threats and vulnerabilities associated with each in light of the ISO/SAE 21434 standard.
The improvement possibilities of the studied architectures are provided and their advantages and disadvantages are highlighted herein.
Related Results
Brain Organoids, the Path Forward?
Brain Organoids, the Path Forward?
Photo by Maxim Berg on Unsplash
INTRODUCTION
The brain is one of the most foundational parts of being human, and we are still learning about what makes humans unique. Advancements ...
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...
[RETRACTED] Gro-X Brain Reviews - Is Gro-X Brain A Scam? v1
[RETRACTED] Gro-X Brain Reviews - Is Gro-X Brain A Scam? v1
[RETRACTED]➢Item Name - Gro-X Brain➢ Creation - Natural Organic Compound➢ Incidental Effects - NA➢ Accessibility - Online➢ Rating - ⭐⭐⭐⭐⭐➢ Click Here To Visit - Official Website - ...
Cultivating self-efficacy to empower professionals’ re-up skilling in cybersecurity
Cultivating self-efficacy to empower professionals’ re-up skilling in cybersecurity
Purpose
The accelerated digital transformation and the growing emphasis on privacy, safety and security present ongoing challenges for cybersecurity experts. Alongside these challe...
Cybersecurity in cars: history of digitalization of cars, current status of the problem, sustainable development goals and standards
Cybersecurity in cars: history of digitalization of cars, current status of the problem, sustainable development goals and standards
Problem. At present, information security issues are a priority. The need for specialists with appropriate qualifications is growing, and educational institutions face the task of ...
Cybersecurity Guidebook for Cyber-Physical Vehicle Systems
Cybersecurity Guidebook for Cyber-Physical Vehicle Systems
<div class="section abstract">
<div class="htmlview paragraph">This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and ...
Cybersecurity Guidebook for Cyber-Physical Vehicle Systems
Cybersecurity Guidebook for Cyber-Physical Vehicle Systems
<div class="section abstract">
<div class="htmlview paragraph">This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and ...
Cybersecurity in Digital Transformation in Healthcare : A Systematic Literature Review (Preprint)
Cybersecurity in Digital Transformation in Healthcare : A Systematic Literature Review (Preprint)
BACKGROUND
In an era of rapid digital transformation, the healthcare sector stands as a beacon of innovation, leveraging the latest technologies to improve ...

