Javascript must be enabled to continue!
Unconventional Fractal Modelling and Simulation of Heterogeneous and Anisotropic Reservoirs
View through CrossRef
One strategy for reducing global greenhouse gas emissions as the world progresses towards net zero is to extract more hydrocarbons from existing resources. Conventional modelling and simulation of heterogeneous and anisotropic reservoirs consistently and significantly underestimates production, sometimes by as much as 70%.We now understand that many reservoir properties are fractal, such as porosity, grain size and permeability. While water saturation and capillary pressure have distributions which arise from fractally-distributed microstructural properties. Recent work has resulted in the development of the fractal theory of Archie’s laws, providing fractal dimensions underlying both the cementation and saturation exponents that is consistent with the n-phase Archie’s law theory.The significant underestimation of production by conventional reservoir models can be overcome by the use of advanced fractal reservoir models (AFRMs) which take account of the fractal distribution of key petrophysical properties such as porosity, grain size, cementation exponent, permeability, water saturation and capillary pressure. These models employ existing and interpolated data across an extended range of scales and take account of variability less than the 50 m seismic resolution limit. AFRMs provide production profiles that are much closer to actual production profiles.This presentation describes briefly the AFRM approach to the modelling and simulation of heterogeneous and anisotropic reservoirs, showing how AFRMs can be generated easily to match an imposed degree of heterogeneity and anisotropy, or can be conditioned to represent the heterogeneity and anisotropy of the target reservoirs. We describe how AFRMs can be generated and normalised to represent key petrophysical parameters, how AFRM models can be used to calculate permeability, synthetic poroperm cross-plots, water saturation maps and relative permeability curves, and how AFRMs which have been conditioned to represent real reservoirs provide a much better simulated production parameters than the current best technology.Generic AFRM modelling and simulation show that total production, production rate, water cut and the time to water breakthrough all depend strongly on heterogeneity and anisotropy. Counter to expectation, optimal production is obtained from placing both injectors and producers in the most permeable areas of heterogeneous reservoirs. Furthermore, modelling with different degrees and directions of anisotropy shows how hydrocarbon production depends critically on anisotropy direction, which changes over the lifetime of the reservoir.AFRMs are ultimately only useful if they can be conditioned to real reservoirs. We have developed a method of fractal interpolation to match AFRMs to reservoir data across a wide scale range. Results comparing the hydrocarbon production characteristics of such an approach to a conventional krigging approach show a remarkable improvement in the modelling of hydrocarbon production when AFRMs are used; with AFRMs in moderate and high heterogeneity reservoirs returning values always within 5% of the reference case, while the conventional approach often resulted in systematic underestimations of production rate by over 70%.Although more work needs to be done on this new approach to reservoir modelling, initial results indicate that it has the potential for improving the accuracy of modelling and simulation in heterogeneous and anisotropic reservoirs by an order of magnitude or more.
Title: Unconventional Fractal Modelling and Simulation of Heterogeneous and Anisotropic Reservoirs
Description:
One strategy for reducing global greenhouse gas emissions as the world progresses towards net zero is to extract more hydrocarbons from existing resources.
Conventional modelling and simulation of heterogeneous and anisotropic reservoirs consistently and significantly underestimates production, sometimes by as much as 70%.
We now understand that many reservoir properties are fractal, such as porosity, grain size and permeability.
While water saturation and capillary pressure have distributions which arise from fractally-distributed microstructural properties.
Recent work has resulted in the development of the fractal theory of Archie’s laws, providing fractal dimensions underlying both the cementation and saturation exponents that is consistent with the n-phase Archie’s law theory.
The significant underestimation of production by conventional reservoir models can be overcome by the use of advanced fractal reservoir models (AFRMs) which take account of the fractal distribution of key petrophysical properties such as porosity, grain size, cementation exponent, permeability, water saturation and capillary pressure.
These models employ existing and interpolated data across an extended range of scales and take account of variability less than the 50 m seismic resolution limit.
AFRMs provide production profiles that are much closer to actual production profiles.
This presentation describes briefly the AFRM approach to the modelling and simulation of heterogeneous and anisotropic reservoirs, showing how AFRMs can be generated easily to match an imposed degree of heterogeneity and anisotropy, or can be conditioned to represent the heterogeneity and anisotropy of the target reservoirs.
We describe how AFRMs can be generated and normalised to represent key petrophysical parameters, how AFRM models can be used to calculate permeability, synthetic poroperm cross-plots, water saturation maps and relative permeability curves, and how AFRMs which have been conditioned to represent real reservoirs provide a much better simulated production parameters than the current best technology.
Generic AFRM modelling and simulation show that total production, production rate, water cut and the time to water breakthrough all depend strongly on heterogeneity and anisotropy.
Counter to expectation, optimal production is obtained from placing both injectors and producers in the most permeable areas of heterogeneous reservoirs.
Furthermore, modelling with different degrees and directions of anisotropy shows how hydrocarbon production depends critically on anisotropy direction, which changes over the lifetime of the reservoir.
AFRMs are ultimately only useful if they can be conditioned to real reservoirs.
We have developed a method of fractal interpolation to match AFRMs to reservoir data across a wide scale range.
Results comparing the hydrocarbon production characteristics of such an approach to a conventional krigging approach show a remarkable improvement in the modelling of hydrocarbon production when AFRMs are used; with AFRMs in moderate and high heterogeneity reservoirs returning values always within 5% of the reference case, while the conventional approach often resulted in systematic underestimations of production rate by over 70%.
Although more work needs to be done on this new approach to reservoir modelling, initial results indicate that it has the potential for improving the accuracy of modelling and simulation in heterogeneous and anisotropic reservoirs by an order of magnitude or more.
Related Results
Dynamic Rigid Fractal Spacetime Manifold Theory
Dynamic Rigid Fractal Spacetime Manifold Theory
This paper proposes an innovative framework, the Dynamic Rigid Fractal Spacetime Manifold Theory (DRFSMT), which integrates fractal and noncommutative algebra to provide a unified ...
Understanding Unconventional Gas Reservoir Damages
Understanding Unconventional Gas Reservoir Damages
Abstract
It is estimated that there are large reserves of unconventional gas located throughout the world, including coalbed methane, shale gas and tight gas sand...
Fractal Description of Pore Structures of Low Permeability Oil Reservoirs and its Relationship with Gemini Surfactant Flooding
Fractal Description of Pore Structures of Low Permeability Oil Reservoirs and its Relationship with Gemini Surfactant Flooding
Abstract
Gemini surfactant flooding is a promising technique to enhance oil recovery from medium-high permeability oil reservoirs. The screening of the gemini surfac...
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract
Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Acoustics of Fractal Porous Material and Fractional Calculus
Acoustics of Fractal Porous Material and Fractional Calculus
In this paper, we present a fractal (self-similar) model of acoustic propagation in a porous material with a rigid structure. The fractal medium is modeled as a continuous medium o...
Thermal Transport of Graphene Sheets with Fractal Defects
Thermal Transport of Graphene Sheets with Fractal Defects
Graphene combined with fractal structures would probably be a promising candidate design of an antenna for a wireless communication system. However, the thermal transport propertie...
Quantitative Description for the Heterogeneity of Pore Structure by Using Mercury Capillary Pressure Curves
Quantitative Description for the Heterogeneity of Pore Structure by Using Mercury Capillary Pressure Curves
ABSTRACT
Pore structure of reservoir rock is one of the most important factors to affect microscopic oil and water flowing in porous media and the development effici...
Saturation Exponents Derived from Fractal Modeling of Thin-sections
Saturation Exponents Derived from Fractal Modeling of Thin-sections
Abstract
Determination of the initial saturation of a hydrocarbon reservoir requires resistivity log data and saturation exponent. A number of experimental invest...


