Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Experimental and Numerical Investigation on Infilled Vertical Well LASER-Assisted SAGD

View through CrossRef
In the SAGD process with dual horizontal wells in heterogeneous reservoirs, the injection pressure of steam huff-n-puff by infilled interwell vertical wells is too high, and the heat communication between SAGD wellpairs and infilled wells is too long, which leads to a series of problems. The solvent-assisted vertical well stimulation (LASER) technology is proposed to solve the problems above. The solvent formula was optimized, and its key mechanism was studied by viscosity reduction experiments, multicomponent phase behavior experiments at high temperature and high pressure, and scaled two-dimensional physical experiments. The experimental results show that when adding 10% 2# or 3# solvent oil, the viscosity reduction of crude oil can reach 96.65% and 96.73%, respectively. The HTHP visualized phase behavior experiment results show that the mixture of low flash point solvent oil 2# with high flash point solvent oil 3# (volumetric ratio 3 : 2) has excellent high temperature oil solubility stability and is similar to water vapor phase behavior, so it is determined as the ideal formula. The scaled two-dimensional physical experiment results show that the solvent-assisted vertical well huff-n-puff has the key mechanism of reducing injection pressure and porous flow resistance, expanding the sweep region of injected fluid and accelerating thermal communication. The cycle of huff-n-puff was reduced from 6 to 3, which greatly shortened the thermal communication time. From the scaled physical experiments, the oil rate and the oil recovery of SAGD were improved by 19.86% and 6.3%, respectively. Field-scale numerical simulation was performed, and the production performance compared with SAGD and conventional infilled CSS-SAGD was investigated, which shows that by adding solvent into steam stimulation, 6 cycles were reduced, and the incremental oil recovery factor was 27.3% and 13.2%, respectively. The performance of accelerating thermal communication and production improvement by LASER has been validated by 4 SAGD wellpairs in field practice, and its long-term prediction result shows significant potential in similar heterogeneous SAGD reservoirs.
Title: Experimental and Numerical Investigation on Infilled Vertical Well LASER-Assisted SAGD
Description:
In the SAGD process with dual horizontal wells in heterogeneous reservoirs, the injection pressure of steam huff-n-puff by infilled interwell vertical wells is too high, and the heat communication between SAGD wellpairs and infilled wells is too long, which leads to a series of problems.
The solvent-assisted vertical well stimulation (LASER) technology is proposed to solve the problems above.
The solvent formula was optimized, and its key mechanism was studied by viscosity reduction experiments, multicomponent phase behavior experiments at high temperature and high pressure, and scaled two-dimensional physical experiments.
The experimental results show that when adding 10% 2# or 3# solvent oil, the viscosity reduction of crude oil can reach 96.
65% and 96.
73%, respectively.
The HTHP visualized phase behavior experiment results show that the mixture of low flash point solvent oil 2# with high flash point solvent oil 3# (volumetric ratio 3 : 2) has excellent high temperature oil solubility stability and is similar to water vapor phase behavior, so it is determined as the ideal formula.
The scaled two-dimensional physical experiment results show that the solvent-assisted vertical well huff-n-puff has the key mechanism of reducing injection pressure and porous flow resistance, expanding the sweep region of injected fluid and accelerating thermal communication.
The cycle of huff-n-puff was reduced from 6 to 3, which greatly shortened the thermal communication time.
From the scaled physical experiments, the oil rate and the oil recovery of SAGD were improved by 19.
86% and 6.
3%, respectively.
Field-scale numerical simulation was performed, and the production performance compared with SAGD and conventional infilled CSS-SAGD was investigated, which shows that by adding solvent into steam stimulation, 6 cycles were reduced, and the incremental oil recovery factor was 27.
3% and 13.
2%, respectively.
The performance of accelerating thermal communication and production improvement by LASER has been validated by 4 SAGD wellpairs in field practice, and its long-term prediction result shows significant potential in similar heterogeneous SAGD reservoirs.

Related Results

Experimental Study of Urea-SAGD Process
Experimental Study of Urea-SAGD Process
AbstractImproving recovery factor and heat efficiency of SAGD process has always been the main pursuit of EOR technology. This paper will provide the experimental study results of ...
Numerical Simulation of Electrical-Heating Assisted SAGD in Heterogeneous Heavy Oil Reservoirs
Numerical Simulation of Electrical-Heating Assisted SAGD in Heterogeneous Heavy Oil Reservoirs
Abstract In order to massively enhance the performance of heterogeneous SAGD projects, the targeted Electrical-Heating in poor steam chamber segment assisted SAGD (E...
How to Plan a SAGD Project, If You Must…
How to Plan a SAGD Project, If You Must…
Abstract Steam-Assisted Gravity Drainage (SAGD) is widely used in Alberta for recovering bitumen from oil (tar) sands. A variation of the same has had some success i...
Convective SAGD Process
Convective SAGD Process
Abstract In steam assisted gravity drainage (SAGD) process, accumulation of non-condensable gases at the edges of the steam chamber creates a resistance to heat tran...
Real Time Optimization of SAGD Wells
Real Time Optimization of SAGD Wells
Abstract The SAGD process has been utilized for the past 15 years and an efficient steam utilization process provides the best solution to reducing the variable prod...
Modeling of Steam-Liquid Flow Inside and Around SAGD Wells During Startup Stage
Modeling of Steam-Liquid Flow Inside and Around SAGD Wells During Startup Stage
ABSTRACT Canada’s oil sands deposits in northern Alberta are estimated to contain more than 1.35 trillion barrels (~215 billion m3) of bitumen. Such a large resource...
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Reinforced masonry constitutes about 10% of all low-rise construction in the US. Most of these structures are commercial and school buildings. It may also be used for multi-story h...

Back to Top