Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Dense cores and star formation in the giant molecular cloud Vela C

View through CrossRef
Context. The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane. Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress. Aims. We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C. Methods. We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size ~19′′2, spatial resolution ~0.07 pc at 700 pc) at the APEX telescope. We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources. We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data. The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores. The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.7 M⊙. Results. We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature). Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution. Clustering of cores at scales of 1–6 pc is also found, hinting at fractionation of magnetised, turbulent gas.
Title: Dense cores and star formation in the giant molecular cloud Vela C
Description:
Context.
The Vela Molecular Ridge is one of the nearest (700 pc) giant molecular cloud (GMC) complexes hosting intermediate-mass (up to early B, late O stars) star formation, and is located in the outer Galaxy, inside the Galactic plane.
Vela C is one of the GMCs making up the Vela Molecular Ridge, and exhibits both sub-regions of robust and sub-regions of more quiescent star formation activity, with both low- and intermediate(high)-mass star formation in progress.
Aims.
We aim to study the individual and global properties of dense dust cores in Vela C, and aim to search for spatial variations in these properties which could be related to different environmental properties and/or evolutionary stages in the various sub-regions of Vela C.
Methods.
We mapped the submillimetre (345 GHz) emission from vela C with LABOCA (beam size ~19′′2, spatial resolution ~0.
07 pc at 700 pc) at the APEX telescope.
We used the clump-finding algorithm CuTEx to identify the compact submillimetre sources.
We also used SIMBA (250 GHz) observations, and Herschel and WISE ancillary data.
The association with WISE red sources allowed the protostellar and starless cores to be separated, whereas the Herschel dataset allowed the dust temperature to be derived for a fraction of cores.
The protostellar and starless core mass functions (CMFs) were constructed following two different approaches, achieving a mass completeness limit of 3.
7 M⊙.
Results.
We retrieved 549 submillimetre cores, 316 of which are starless and mostly gravitationally bound (therefore prestellar in nature).
Both the protostellar and the starless CMFs are consistent with the shape of a Salpeter initial mass function in the high-mass part of the distribution.
Clustering of cores at scales of 1–6 pc is also found, hinting at fractionation of magnetised, turbulent gas.

Related Results

Offshore Giant Fields, 1950-1990
Offshore Giant Fields, 1950-1990
ABSTRACT OFFSHORE GIANT FIELDS 1950 - 1990 During the past forty years...
Dense gas in a giant molecular filament
Dense gas in a giant molecular filament
Context. Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large (≳50 pc) and massive (≳105 M⊙) filaments, know as giant molecular filame...
Hybrid Cloud Scheduling Method for Cloud Bursting
Hybrid Cloud Scheduling Method for Cloud Bursting
In the paper, we consider the hybrid cloud model used for cloud bursting, when the computational capacity of the private cloud provider is insufficient to deal with the peak number...
Unveiling the intensity-dependent wake structure of Vela X–1 using MAXI/GSC
Unveiling the intensity-dependent wake structure of Vela X–1 using MAXI/GSC
Context. Vela X−1 is one of the first few high-mass X-ray binary (HMXB) pulsars to be discovered. In HMXBs with pulsars such as Vela X−1, the companion’s stellar wind is significan...
Leveraging Artificial Intelligence for smart cloud migration, reducing cost and enhancing efficiency
Leveraging Artificial Intelligence for smart cloud migration, reducing cost and enhancing efficiency
Cloud computing has become a critical component of modern IT infrastructure, offering businesses scalability, flexibility, and cost efficiency. Unoptimized cloud migration strategi...
THE IMPACT OF CLOUD COMPUTING ON CONSTRUCTION PROJECT DELIVERY ABUJA NIGERIA
THE IMPACT OF CLOUD COMPUTING ON CONSTRUCTION PROJECT DELIVERY ABUJA NIGERIA
Cloud computing is the delivery of computing services, such as storage, processing power, and software applications, via the internet. Cloud computing offers various advantages and...
Star-formation-rate estimates from water emission
Star-formation-rate estimates from water emission
Context. The star-formation rate (SFR) quantitatively describes the star-formation process in galaxies throughout cosmic history. Current ways to calibrate this rate do not usually...
Developing a Cloud Computing Framework for University Libraries
Developing a Cloud Computing Framework for University Libraries
Our understanding of the library context on security challenges on storing research output on the cloud is inadequate and incomplete. Existing research has mostly focused on profit...

Back to Top