Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Theoretical study of laser-cooled SH<sup>–</sup> anion

View through CrossRef
The potential energy curves, dipole moments, and transition dipole moments for the <inline-formula><tex-math id="M13">\begin{document}${{\rm{X}}^1}{\Sigma ^ + }$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M13.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M13.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M14">\begin{document}${{\rm{a}}^3}\Pi $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M14.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M14.png"/></alternatives></inline-formula>, and <inline-formula><tex-math id="M15">\begin{document}${{\rm{A}}^1}\Pi $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M15.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M15.png"/></alternatives></inline-formula> electronic state of sulfur hydride anion (SH<sup>–</sup>) are calculated by using the multi-reference configuration interaction method plus Davidson corrections (MRCI+<i>Q</i>) with all-electron basis set. The scalar relativistic corrections and core-valence correlations are also considered. In the CASSCF calculations, H(1s) and S(3s3p4s) shells are chosen as active space, and the rest orbitals S(1s2s2p) as closed-shell. In the MRCI+<i>Q</i> calculations, the S(1s2s2p) shells are used for the core-valence correlation. Spectroscopic parameters, Einstein spontaneous emission coefficient, Franck-Condon factors, and spontaneous radiative lifetimes are obtained by using Le Roy’s LEVEL8.0 program. The calculated spectroscopic parameters are in good agreement with available experimental data and theoretical values. Spin-orbit coupling (SOC) effects are evaluated with Breit-Pauli operators at the MRCI+<i>Q</i> level. Transition dipole moments (TDMs) for the <inline-formula><tex-math id="M16">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M16.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M16.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M17">\begin{document}${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M17.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M17.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M18">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M18.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M18.png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M19">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _{{0^ + }}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M19.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M19.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M20">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _1}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M20.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M20.png"/></alternatives></inline-formula> transitions are also calculated. The strength for the <inline-formula><tex-math id="Z-20190315031218-1">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_Z-20190315031218-1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_Z-20190315031218-1.png"/></alternatives></inline-formula> is the strongest in these five transitions, the value of TDM at <i>R</i><sub>e</sub> is –1.3636 D. We find that the value of TDM for the <inline-formula><tex-math id="M21">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M21.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M21.png"/></alternatives></inline-formula> transition at <i>R</i><sub>e</sub> is 0.5269 D. Therefore, this transition must be taken into account to build the scheme of laser-cooled SH<sup>–</sup> anion. Highly diagonally distributed Franck-Condon factor <i>f</i><sub>00</sub> for the <inline-formula><tex-math id="M22">\begin{document}${{\rm{a}}^3}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M22.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M22.png"/></alternatives></inline-formula> <inline-formula><tex-math id="M22-1">\begin{document}$ (\nu '' = 0)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M22-1.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M22-1.png"/></alternatives></inline-formula> transition is 0.9990 and the value for the <inline-formula><tex-math id="M23">\begin{document}${{\rm{A}}^1}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\nu '' = 0)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M23.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M23.png"/></alternatives></inline-formula> transition is 0.9999. Spontaneous radiative lifetimes of <inline-formula><tex-math id="M24">\begin{document}$\tau \left( {{{\rm{a}}^3}{\Pi _1}} \right)= 1.472 \;{\text{μ}}{\rm{s}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M24.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M24.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M25">\begin{document}$\tau \left( {{{\rm{A}}^1}{\Pi _1}} \right)=0.188 \;{\text{μ}}{\rm{s}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M25.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M25.png"/></alternatives></inline-formula> are obtained, which can ensure that laser cools SH<sup>–</sup> anion rapidly. To drive the <inline-formula><tex-math id="M26">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M26.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M26.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M27">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M27.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M27.png"/></alternatives></inline-formula> transitions, just one laser wavelength is required. The wavelengths are 492.27 nm and 478.57 nm for two transitions, respectively. Notably, the influences of the intervening states <inline-formula><tex-math id="M28">\begin{document}${{\rm{a}}^3}{\Pi _1}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M28.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M28.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M29">\begin{document}${{\rm{a}}^3}{\Pi _{{0^{\rm{ + }}}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M29.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M29.png"/></alternatives></inline-formula> on the <inline-formula><tex-math id="M30">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {X^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M30.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M30.png"/></alternatives></inline-formula> transition are small enough to implement a laser cooling project. A spin-forbidden transition and a three-electronic-level transition optical scheme of laser-cooled SH<sup>–</sup> anion are constructed, respectively. In addition, the Doppler temperatures and recoil temperatures for the <inline-formula><tex-math id="M31">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M31.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M31.png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M32">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M32.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="6-20182039_M32.png"/></alternatives></inline-formula> transitions of laser-cooled SH<sup>–</sup> anion are also obtained, respectively.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Theoretical study of laser-cooled SH<sup>–</sup> anion
Description:
The potential energy curves, dipole moments, and transition dipole moments for the <inline-formula><tex-math id="M13">\begin{document}${{\rm{X}}^1}{\Sigma ^ + }$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M13.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M13.
png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M14">\begin{document}${{\rm{a}}^3}\Pi $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M14.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M14.
png"/></alternatives></inline-formula>, and <inline-formula><tex-math id="M15">\begin{document}${{\rm{A}}^1}\Pi $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M15.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M15.
png"/></alternatives></inline-formula> electronic state of sulfur hydride anion (SH<sup>–</sup>) are calculated by using the multi-reference configuration interaction method plus Davidson corrections (MRCI+<i>Q</i>) with all-electron basis set.
The scalar relativistic corrections and core-valence correlations are also considered.
In the CASSCF calculations, H(1s) and S(3s3p4s) shells are chosen as active space, and the rest orbitals S(1s2s2p) as closed-shell.
In the MRCI+<i>Q</i> calculations, the S(1s2s2p) shells are used for the core-valence correlation.
Spectroscopic parameters, Einstein spontaneous emission coefficient, Franck-Condon factors, and spontaneous radiative lifetimes are obtained by using Le Roy’s LEVEL8.
0 program.
The calculated spectroscopic parameters are in good agreement with available experimental data and theoretical values.
Spin-orbit coupling (SOC) effects are evaluated with Breit-Pauli operators at the MRCI+<i>Q</i> level.
Transition dipole moments (TDMs) for the <inline-formula><tex-math id="M16">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M16.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M16.
png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M17">\begin{document}${{\rm{a}}^3}{\Pi _{{0^ + }}} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M17.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M17.
png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M18">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M18.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M18.
png"/></alternatives></inline-formula>, <inline-formula><tex-math id="M19">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _{{0^ + }}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M19.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M19.
png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M20">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{a}}^3}{\Pi _1}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M20.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M20.
png"/></alternatives></inline-formula> transitions are also calculated.
The strength for the <inline-formula><tex-math id="Z-20190315031218-1">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_Z-20190315031218-1.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_Z-20190315031218-1.
png"/></alternatives></inline-formula> is the strongest in these five transitions, the value of TDM at <i>R</i><sub>e</sub> is –1.
3636 D.
We find that the value of TDM for the <inline-formula><tex-math id="M21">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M21.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M21.
png"/></alternatives></inline-formula> transition at <i>R</i><sub>e</sub> is 0.
5269 D.
Therefore, this transition must be taken into account to build the scheme of laser-cooled SH<sup>–</sup> anion.
Highly diagonally distributed Franck-Condon factor <i>f</i><sub>00</sub> for the <inline-formula><tex-math id="M22">\begin{document}${{\rm{a}}^3}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M22.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M22.
png"/></alternatives></inline-formula> <inline-formula><tex-math id="M22-1">\begin{document}$ (\nu '' = 0)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M22-1.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M22-1.
png"/></alternatives></inline-formula> transition is 0.
9990 and the value for the <inline-formula><tex-math id="M23">\begin{document}${{\rm{A}}^1}{\Pi _1}(\nu ' = 0) \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + (\nu '' = 0)$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M23.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M23.
png"/></alternatives></inline-formula> transition is 0.
9999.
Spontaneous radiative lifetimes of <inline-formula><tex-math id="M24">\begin{document}$\tau \left( {{{\rm{a}}^3}{\Pi _1}} \right)= 1.
472 \;{\text{μ}}{\rm{s}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M24.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M24.
png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M25">\begin{document}$\tau \left( {{{\rm{A}}^1}{\Pi _1}} \right)=0.
188 \;{\text{μ}}{\rm{s}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M25.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M25.
png"/></alternatives></inline-formula> are obtained, which can ensure that laser cools SH<sup>–</sup> anion rapidly.
To drive the <inline-formula><tex-math id="M26">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M26.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M26.
png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M27">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M27.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M27.
png"/></alternatives></inline-formula> transitions, just one laser wavelength is required.
The wavelengths are 492.
27 nm and 478.
57 nm for two transitions, respectively.
Notably, the influences of the intervening states <inline-formula><tex-math id="M28">\begin{document}${{\rm{a}}^3}{\Pi _1}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M28.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M28.
png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M29">\begin{document}${{\rm{a}}^3}{\Pi _{{0^{\rm{ + }}}}}$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M29.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M29.
png"/></alternatives></inline-formula> on the <inline-formula><tex-math id="M30">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {X^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M30.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M30.
png"/></alternatives></inline-formula> transition are small enough to implement a laser cooling project.
A spin-forbidden transition and a three-electronic-level transition optical scheme of laser-cooled SH<sup>–</sup> anion are constructed, respectively.
In addition, the Doppler temperatures and recoil temperatures for the <inline-formula><tex-math id="M31">\begin{document}${{\rm{a}}^3}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M31.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M31.
png"/></alternatives></inline-formula> and <inline-formula><tex-math id="M32">\begin{document}${{\rm{A}}^1}{\Pi _1} \leftrightarrow {{\rm{X}}^1}\Sigma _{{0^ + }}^ + $\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M32.
jpg"/><graphic xmlns:xlink="http://www.
w3.
org/1999/xlink" xlink:href="6-20182039_M32.
png"/></alternatives></inline-formula> transitions of laser-cooled SH<sup>–</sup> anion are also obtained, respectively.

Related Results

Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
In recent years, more than 90% of the signal laser power can be up-converted based on the high-efficiency double resonant external cavity sum-frequency generation (SFG), especially...
Excimer Laser Micromachining of MEMS Materials
Excimer Laser Micromachining of MEMS Materials
Conventional photolithography-based microfabrication techniques are limited to two-dimensional fabrication and only particular materials can be used. Excimer laser micromachining e...
Laser show safety for smaller shows: The ILDA category a laser show standard
Laser show safety for smaller shows: The ILDA category a laser show standard
The International Laser Display Association has developed a “Category A Standard” for laser shows that ILDA considers to be generally recognized as safe under the conditions of the...
Effects of Local Cooling Media on the Mechanical Properties of Heat Treated Mild Steel
Effects of Local Cooling Media on the Mechanical Properties of Heat Treated Mild Steel
This paper reports the effects of local cooling media (groundnut oil, palm oil, shea butter and air) on the mechanical properties of heat treated mild steel. Tensile test, hardness...
Effects of Local Cooling Media on the Mechanical Properties of Heat Treated Mild Steel
Effects of Local Cooling Media on the Mechanical Properties of Heat Treated Mild Steel
This paper reports the effects of local cooling media (groundnut oil, palm oil, shea butter and air) on the mechanical properties of heat treated mild steel. Tensile test, hardness...
Development of a high intensity Mid-Ir OPCPA pumped by a HO:YLF amplifier
Development of a high intensity Mid-Ir OPCPA pumped by a HO:YLF amplifier
The continuous development of laser sources delivering ultra-short light pulses underpins much of the current progress in experimental science, particularly in the domain of physic...
Management of Lower Limb Varicose Veins Using Endovenous Laser Ablation, Micro-Phlebectomy, and Sclerotherapy Using Multimodal Analgesia
Management of Lower Limb Varicose Veins Using Endovenous Laser Ablation, Micro-Phlebectomy, and Sclerotherapy Using Multimodal Analgesia
Abstract Introduction Previously, the conventional surgical procedure of high-ligation and saphenous stripping was commonly used to treat varicose veins (VVs). However, contemporar...
Laser Cladded Surface Hardening Coating With Gradient of Mechanical Properties
Laser Cladded Surface Hardening Coating With Gradient of Mechanical Properties
The present dissertation “Laser Cladded Surface Hardening Coating with Gradient of Mechanical Properties” is devoted to the research of laser cladding process for obtaining high qu...

Back to Top