Javascript must be enabled to continue!
Comparison of analysis methods for separating and recognizing multicomponent radar signals
View through CrossRef
This paper proposes a model for separating and recognizing a mixture of radar signals using combined multiresolution methods and convolution neural networks. The model involves three main steps: separating the signal into individual components using the Multiresolution analysis (MRA) methods: Empirical mode decomposition (EMD), Variational mode decomposition (VMD), and Maximal overlap discrete wavelet packet transform (MODWPT); transforming these components into the time-frequency domain using Wigner-Ville distribution (WVD) and storing them as images; and then feeding these images into the SqueezeNet for recognition. These multiresolution methods are then compared based on three criteria: The number of successful separations, the SNR ratio of the input signal, and the correlation between the separated signal components and the original signal components. Additionally, we evaluate the performance of the SqueezeNet with real-time signals.
Academy of Military Science and Technology
Title: Comparison of analysis methods for separating and recognizing multicomponent radar signals
Description:
This paper proposes a model for separating and recognizing a mixture of radar signals using combined multiresolution methods and convolution neural networks.
The model involves three main steps: separating the signal into individual components using the Multiresolution analysis (MRA) methods: Empirical mode decomposition (EMD), Variational mode decomposition (VMD), and Maximal overlap discrete wavelet packet transform (MODWPT); transforming these components into the time-frequency domain using Wigner-Ville distribution (WVD) and storing them as images; and then feeding these images into the SqueezeNet for recognition.
These multiresolution methods are then compared based on three criteria: The number of successful separations, the SNR ratio of the input signal, and the correlation between the separated signal components and the original signal components.
Additionally, we evaluate the performance of the SqueezeNet with real-time signals.
Related Results
The Firepond Long Range Imaging CO2 Laser Radar
The Firepond Long Range Imaging CO2 Laser Radar
The Massachusetts Institute of Technology Lincoln Laboratory has developed and tested the most advanced, high power, coherent CO2 laser radar ever built. The Firepond imaging laser...
A New Radar Signal Sorting Method Based on Data Field
A New Radar Signal Sorting Method Based on Data Field
With the increasingly complex electromagnetic environment and continuous appearance of advanced system radars, signals received by radar reconnaissance receivers become even more i...
Waveform Selection For Multi-Band Multistatic Radar Networks
Waveform Selection For Multi-Band Multistatic Radar Networks
This study investigates the benefits of waveform selection by exploiting multiple illuminators of opportunity (IO) in hybrid radar systems consisting of multi-band receivers which ...
Waveform Selection For Multi-Band Multistatic Radar Networks
Waveform Selection For Multi-Band Multistatic Radar Networks
This study investigates the benefits of waveform selection by exploiting multiple illuminators of opportunity (IO) in hybrid radar systems consisting of multi-band receivers which ...
Framework for generation of 3D weather radar data composite products
Framework for generation of 3D weather radar data composite products
Modern weather radar networks play an indispensable role in nowcasting and short-term weather forecasting. They provide high-resolution, volumetric data crucial for identifying con...
Perbaikan Kelarutan Albendazol Melalui Pembentukan Kristal Multikomponen dengan Asam Malat
Perbaikan Kelarutan Albendazol Melalui Pembentukan Kristal Multikomponen dengan Asam Malat
An effort to improve the solubility of albendazole (ABZ), an anthelmintic drug has been successfully carried out through the formation of multicomponent crystal with dl-malic acid ...
New modeling method of millimeter-wave radar considering target radar echo intensity
New modeling method of millimeter-wave radar considering target radar echo intensity
Virtual test evaluation is an important development direction for automatic driving technology testing and evaluation. The millimeter-wave radar sensor model used in virtual test e...
A Rapid Accurate Recognition System for Radar Emitter Signals
A Rapid Accurate Recognition System for Radar Emitter Signals
Radar signal recognition is an indispensable part of an electronic countermeasure system. In order to solve the problem that the current techniques have, which is a low recognition...

