Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Hodge–Dirac, Hodge-Laplacian and Hodge–Stokes operators in $L^p$ spaces on Lipschitz domains

View through CrossRef
This paper concerns Hodge–Dirac operators D_{{}^\Vert}=d+\underline{\delta} acting in L^p(\Omega, \Lambda) where \Omega is a bounded open subset of {\mathbb{R}}^n satisfying some kind of Lipschitz condition, \Lambda is the exterior algebra of {\mathbb{R}}^n , d is the exterior derivative acting on the de Rham complex of differential forms on \Omega , and \underline{\delta} is the interior derivative with tangential boundary conditions. In L^2(\Omega,\Lambda) , \underline{\delta} = {d}^* and D_{{}^\Vert} is self-adjoint, thus having bounded resolvents \{({\rm I}+itD_{{}^\Vert})^{-1}\}_{t\in{\mathbb{R}}} as well as a bounded functional calculus in L^2(\Omega,\Lambda) . We investigate the range of values p_H < p < p^H about p=2 for which D_{{}^\Vert} has bounded resolvents and a bounded holomorphic functional calculus in L^p(\Omega,\Lambda) . On domains which we call very weakly Lipschitz, we show that this is the same range of values as for which L^p(\Omega,\Lambda) has a Hodge (or Helmholz) decomposition, being an open interval that includes 2. The Hodge-Laplacian \Delta_{{{}^\Vert}} is the square of the Hodge–Dirac operator, i.e., -\Delta_{{}^\Vert}={D_{{}^\Vert}}^2 , so it also has a bounded functional calculus in L^p(\Omega,\Lambda) when p_H < p < p^H . But the Stokes operator with Hodge boundary conditions, which is the restriction of -\Delta_{{}^\Vert} to the subspace of divergence free vector fields in L^p(\Omega,\Lambda^1) with tangential boundary conditions, has a bounded holomorphic functional calculus for further values of p , namely for max \{1,{p_H}_S\} < p < p^H where {p_H}_S is the Sobolev exponent below p_H , given by 1/{{p_H}_S} =1/{p_H}+1/n , so that {{p_H}_S} < 2n/(n+2) . In 3 dimensions, {p_H}_S < 6/5 . We show also that for bounded strongly Lipschitz domains \Omega , p_H < 2n/(n+1) < 2n/(n-1) < p^H , in agreement with the known results that p_H < 4/3 < 4 < p^H in dimension 2, and p_H < 3/2 < 3 < p^H in dimension 3. In both dimensions 2 and 3, {p_H}_S<1 , implying that the Stokes operator has a bounded functional calculus in L^p(\Omega,\Lambda^1) when \Omega is strongly Lipschitz and 1 < p < p^H .
European Mathematical Society - EMS - Publishing House GmbH
Title: Hodge–Dirac, Hodge-Laplacian and Hodge–Stokes operators in $L^p$ spaces on Lipschitz domains
Description:
This paper concerns Hodge–Dirac operators D_{{}^\Vert}=d+\underline{\delta} acting in L^p(\Omega, \Lambda) where \Omega is a bounded open subset of {\mathbb{R}}^n satisfying some kind of Lipschitz condition, \Lambda is the exterior algebra of {\mathbb{R}}^n , d is the exterior derivative acting on the de Rham complex of differential forms on \Omega , and \underline{\delta} is the interior derivative with tangential boundary conditions.
In L^2(\Omega,\Lambda) , \underline{\delta} = {d}^* and D_{{}^\Vert} is self-adjoint, thus having bounded resolvents \{({\rm I}+itD_{{}^\Vert})^{-1}\}_{t\in{\mathbb{R}}} as well as a bounded functional calculus in L^2(\Omega,\Lambda) .
We investigate the range of values p_H < p < p^H about p=2 for which D_{{}^\Vert} has bounded resolvents and a bounded holomorphic functional calculus in L^p(\Omega,\Lambda) .
On domains which we call very weakly Lipschitz, we show that this is the same range of values as for which L^p(\Omega,\Lambda) has a Hodge (or Helmholz) decomposition, being an open interval that includes 2.
The Hodge-Laplacian \Delta_{{{}^\Vert}} is the square of the Hodge–Dirac operator, i.
e.
, -\Delta_{{}^\Vert}={D_{{}^\Vert}}^2 , so it also has a bounded functional calculus in L^p(\Omega,\Lambda) when p_H < p < p^H .
But the Stokes operator with Hodge boundary conditions, which is the restriction of -\Delta_{{}^\Vert} to the subspace of divergence free vector fields in L^p(\Omega,\Lambda^1) with tangential boundary conditions, has a bounded holomorphic functional calculus for further values of p , namely for max \{1,{p_H}_S\} < p < p^H where {p_H}_S is the Sobolev exponent below p_H , given by 1/{{p_H}_S} =1/{p_H}+1/n , so that {{p_H}_S} < 2n/(n+2) .
In 3 dimensions, {p_H}_S < 6/5 .
We show also that for bounded strongly Lipschitz domains \Omega , p_H < 2n/(n+1) < 2n/(n-1) < p^H , in agreement with the known results that p_H < 4/3 < 4 < p^H in dimension 2, and p_H < 3/2 < 3 < p^H in dimension 3.
In both dimensions 2 and 3, {p_H}_S<1 , implying that the Stokes operator has a bounded functional calculus in L^p(\Omega,\Lambda^1) when \Omega is strongly Lipschitz and 1 < p < p^H .

Related Results

The research of $({\rm{G}}, {\rm{w}})$-Chaos and G-Lipschitz shadowing property
The research of $({\rm{G}}, {\rm{w}})$-Chaos and G-Lipschitz shadowing property
<abstract> <p>In this paper, we introduce the concepts of $ (G, w) - $ Chaos and $ G - $ Lipschitz shadowing property. We study the dynamical properties of $ (G, w) - ...
Charles Hodge, Hermeneutics, and the Struggle with Scripture
Charles Hodge, Hermeneutics, and the Struggle with Scripture
Abstract Charles Hodge continues to garner interest in contemporary theology, though sometimes for unlikely ends. This article assesses one example of this interest....
Mumford-Tate Groups
Mumford-Tate Groups
This chapter provides an introduction to the basic definitions and properties of Mumford-Tate groups in both the case of Hodge structures and of mixed Hodge structures. Hodge struc...
Autoinhibition of cMyBP-C by its middle domains
Autoinhibition of cMyBP-C by its middle domains
AbstractCardiac myosin binding protein-C (cMyBP-C) is a sarcomere regulatory protein consisting of 11 well-folded immunoglobulin-like (Ig-like) and fibronectin type-III domains wit...
Discretization of Riemannian manifolds applied to the Hodge Laplacian
Discretization of Riemannian manifolds applied to the Hodge Laplacian
For $\kappa \geq 0$ and $r_0 > 0$, let ${\Bbb M}(n,\kappa,r_0)$ be the set of all connected compact $n$-dimensional Riemannian manifolds such that $|K_g| \leq \kappa$ and $Inj(M...
Hodge Representations and Hodge Domains
Hodge Representations and Hodge Domains
This chapter deals with Hodge representations and Hodge domains. For general polarized Hodge structures, it considers which semi-simple ℚ-algebraic groups M can be Mumford-Tate gro...
Nonlocal Navier–Stokes Equations: Existence and Asymptotic Behavior
Nonlocal Navier–Stokes Equations: Existence and Asymptotic Behavior
In this article, we are devoted to studying the following nonlocal Navier–Stokes equations involving the time–space fractional operators ...

Back to Top