Javascript must be enabled to continue!
Study on the virtual source calibration technology based on the volume of radioactive gas source
View through CrossRef
The calibration methods for the radioactive Kr and Xe gases produce the key data for the judgment of nuclear fission reaction, whose accurate measurement has always been a difficult problem in operation for a long time. In order to obtain the accuracy, it is very important to calibrate the efficiencies of these gas sources, especially for proficiency test exercise of the laboratory, to analyze the CTBT samples of radioactive xenon, which are used to judge the nuclear test of the country and the measurement system. The relative measurement method has not realized in the experimental calibration, and the Monte Carlo method has large uncertainty also. Therefore, a new measurement method and experimental technology is needed. In order to avoid the above shortcomings, we need to develop a source-less efficient calibration method based on the virtual point source (VPS). In the past, it was suggested that for point sources placed on the symmetry axis, a Ge(Li) or an HPGe cylindrical detector can be changed to an virtual point detector (VPD), where all -ray interactions are considered to occur. This is not a real physical model but only a mathematical description. Aiming at the VPD, we put forward an innovative approach and define the concept of VPS. But, the concept is introduced in a volume source. In this concept, it is assumed that the total photons emission has occurred in a distance within the source described, and it is from the whole source to an imaginary point. If there is really a point located on the symmetry axis of the detector, whose efficiency is similar to that of the whole real volume source, the geometrical considerations used in calibrations of the source will be much simpler. The calibration process of the VPS is: firstly, a standard point source is placed at different position on the symmetry axis to obtain its full-energy peak efficiency. Secondly, the relationship between the height and the efficiency can be established. The position of the VPS can be deduced according to the full-energy peak efficiency of the volume source. Finally, a standard point source, instead of a volume source, is placed at the virtual point position to finish the efficiency calibration work. In this study, the LabSOCS software is used to simulate the detection efficiencies including different volumes of gas source and point source at different points on the symmetry axis. According to the calculated data, a function relationship between the volume of gas source and the virtual point source position is established. It has been proved theoretically that the volume of gas source and the virtual point location have a good linear relationship. This provides a new way in theory to solve the virtual source calibration technology. The VPS efficiency calibration technology is very important in the field of verification of nuclear test-ban, nuclear emergency measurement and environmental radioactivity measurement.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Study on the virtual source calibration technology based on the volume of radioactive gas source
Description:
The calibration methods for the radioactive Kr and Xe gases produce the key data for the judgment of nuclear fission reaction, whose accurate measurement has always been a difficult problem in operation for a long time.
In order to obtain the accuracy, it is very important to calibrate the efficiencies of these gas sources, especially for proficiency test exercise of the laboratory, to analyze the CTBT samples of radioactive xenon, which are used to judge the nuclear test of the country and the measurement system.
The relative measurement method has not realized in the experimental calibration, and the Monte Carlo method has large uncertainty also.
Therefore, a new measurement method and experimental technology is needed.
In order to avoid the above shortcomings, we need to develop a source-less efficient calibration method based on the virtual point source (VPS).
In the past, it was suggested that for point sources placed on the symmetry axis, a Ge(Li) or an HPGe cylindrical detector can be changed to an virtual point detector (VPD), where all -ray interactions are considered to occur.
This is not a real physical model but only a mathematical description.
Aiming at the VPD, we put forward an innovative approach and define the concept of VPS.
But, the concept is introduced in a volume source.
In this concept, it is assumed that the total photons emission has occurred in a distance within the source described, and it is from the whole source to an imaginary point.
If there is really a point located on the symmetry axis of the detector, whose efficiency is similar to that of the whole real volume source, the geometrical considerations used in calibrations of the source will be much simpler.
The calibration process of the VPS is: firstly, a standard point source is placed at different position on the symmetry axis to obtain its full-energy peak efficiency.
Secondly, the relationship between the height and the efficiency can be established.
The position of the VPS can be deduced according to the full-energy peak efficiency of the volume source.
Finally, a standard point source, instead of a volume source, is placed at the virtual point position to finish the efficiency calibration work.
In this study, the LabSOCS software is used to simulate the detection efficiencies including different volumes of gas source and point source at different points on the symmetry axis.
According to the calculated data, a function relationship between the volume of gas source and the virtual point source position is established.
It has been proved theoretically that the volume of gas source and the virtual point location have a good linear relationship.
This provides a new way in theory to solve the virtual source calibration technology.
The VPS efficiency calibration technology is very important in the field of verification of nuclear test-ban, nuclear emergency measurement and environmental radioactivity measurement.
Related Results
Efficient and Effective Gas Sensor Calibration with Randomized Gas Mixtures
Efficient and Effective Gas Sensor Calibration with Randomized Gas Mixtures
Introduction
The selective quantification of target gases in complex mixtures is an important part of numerous applications of chemical gas sensors. ...
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
Abstract
Unconventional reservoirs have burst with considerable force in oil and gas production worldwide. Shale Gas is one of them, with intense activity taking pla...
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract
Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Automatic Hand-Eye Calibration Method of Welding Robot Based on Linear Structured Light
Automatic Hand-Eye Calibration Method of Welding Robot Based on Linear Structured Light
Aiming at solving the problems such as long calibration time, low precision, and complex operation in hand-eye calibration of welding robot, an automatic hand-eye calibration algor...
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field.
Abstract
After some 20 years of pressure ...
Liquid Loading of Horizontal Gas Wells in Changbei Gas Field
Liquid Loading of Horizontal Gas Wells in Changbei Gas Field
The Changbei gas field, which initially exhibited high gas-production performance, is dominated by large-displacement horizontal wells. With the decrease in reservoir pressure, the...
Radiation Emergencies and Public Health: Impacts, Preparedness, Response
Radiation Emergencies and Public Health: Impacts, Preparedness, Response
In addition to the many important benefits associated with the widespread use of radioactive materials, such as in the fields of health care, industry, and household safety, there ...
Use of Formation Water and Associated Gases and their Simultaneous Utilization for Obtaining Microelement Concentrates Fresh Water and Drinking Water
Use of Formation Water and Associated Gases and their Simultaneous Utilization for Obtaining Microelement Concentrates Fresh Water and Drinking Water
Abstract Purpose: The invention relates to the oil industry, inorganic chemistry, in particular, to the methods of complex processing of formation water, using flare gas of oil and...

