Javascript must be enabled to continue!
Waste-to-Hydrogen: A Sustainable Solution for Energy Generation and Waste Management in Nepal
View through CrossRef
Waste-to-Hydrogen (Wahh) is a process of converting waste into hydrogen gas through various methods such as thermal conversion, biological conversion, and chemical conversion. This process not only helps in managing waste but also provides a clean source of energy as hydrogen is a renewable energy source that produces zero greenhouse gas emissions during combustion. Wahh has the potential to provide a sustainable solution for energy generation and waste management in the current scenario of globally increasing energy demands. This study aims to examine the properties and energy efficiencies of various renewable fuels including fuelwood, biogas, biomethane, and biohydrogen with a specific focus on differentiating the characteristics of biohydrogen. The paper explores the emerging concepts of waste-to-hydrogen microgrids, biohydrogen refineries, biohydrogen prosumer networks, and a biohydrogen circular economy, as well as Public-Private-People Partnerships (4Ps) and the hydrogen-centric renewable energy revolution, which are taking shape in industrialized countries. The study presents a comprehensive feasibility analysis of these concepts in the context of Nepal. The results of this research will provide valuable insights into the potential for adopting these innovative technologies in Nepal and will contribute to the development of a sustainable and efficient energy system.
Title: Waste-to-Hydrogen: A Sustainable Solution for Energy Generation and Waste Management in Nepal
Description:
Waste-to-Hydrogen (Wahh) is a process of converting waste into hydrogen gas through various methods such as thermal conversion, biological conversion, and chemical conversion.
This process not only helps in managing waste but also provides a clean source of energy as hydrogen is a renewable energy source that produces zero greenhouse gas emissions during combustion.
Wahh has the potential to provide a sustainable solution for energy generation and waste management in the current scenario of globally increasing energy demands.
This study aims to examine the properties and energy efficiencies of various renewable fuels including fuelwood, biogas, biomethane, and biohydrogen with a specific focus on differentiating the characteristics of biohydrogen.
The paper explores the emerging concepts of waste-to-hydrogen microgrids, biohydrogen refineries, biohydrogen prosumer networks, and a biohydrogen circular economy, as well as Public-Private-People Partnerships (4Ps) and the hydrogen-centric renewable energy revolution, which are taking shape in industrialized countries.
The study presents a comprehensive feasibility analysis of these concepts in the context of Nepal.
The results of this research will provide valuable insights into the potential for adopting these innovative technologies in Nepal and will contribute to the development of a sustainable and efficient energy system.
Related Results
Biohydrogen Production from Potato Waste Using Dark Fermentation
Biohydrogen Production from Potato Waste Using Dark Fermentation
The excessive use of fossil fuels as the primary energy source has resulted in significant environmental and economic challenges, including greenhouse gas emissions and the depleti...
“Nouvelle-Aquitaine” Region : The birth of natural hydrogen exploration in France ?
“Nouvelle-Aquitaine” Region : The birth of natural hydrogen exploration in France ?
As a pioneer, 45-8 ENERGY focuses on exploring and producing eco-responsible industrial gases: helium and natural hydrogen. , as well as the resources that can be associated with.H...
Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C
Expectations for the Role of Hydrogen and Its Derivatives in Different Sectors through Analysis of the Four Energy Scenarios: IEA-STEPS, IEA-NZE, IRENA-PES, and IRENA-1.5°C
Recently, worldwide, the attention being paid to hydrogen and its derivatives as alternative carbon-free (or low-carbon) options for the electricity sector, the transport sector, a...
Research progress of hydrogen tunneling in two-dimensional materials
Research progress of hydrogen tunneling in two-dimensional materials
One-atom-thick material such as graphene, graphene derivatives and graphene-like materials, usually has a dense network lattice structure and therefore dense distribution of electr...
The Challenges of Underground Hydrogen Gas Storage
The Challenges of Underground Hydrogen Gas Storage
ABSTRACT:
While hydrogen as a gas (H2) has been stored in salt caverns on the American Gulf Coast for the last 40 years, it’s attributes are a challenge for under...
Evaluation of construction and demolition waste management practices using environmental and economic impact assessment
Evaluation of construction and demolition waste management practices using environmental and economic impact assessment
Purpose
Effective management of a substantial quantity of construction and demolition (C&D) waste is vital to achieving the objectives of sustainable construc...
Review of Hydrogen Storage in Solid-State Materials
Review of Hydrogen Storage in Solid-State Materials
As a kind of clean energy, hydrogen energy has great potential to reduce environmental pollution and provide efficient energy conversion, and the key to its efficient utilization i...
Hydrogen Storage to Decarbonize Austria's Energy Consumption
Hydrogen Storage to Decarbonize Austria's Energy Consumption
Abstract
The European Union is aiming at reaching greenhouse gas (GHG) emission neutrality in 2050. Austria's current greenhouse gas emissions are 80 million t/year....


