Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Analytical Methods for Atmospheric Carbonyl Compounds: A Review

View through CrossRef
Atmospheric carbonyl compounds have significant impacts on the atmospheric environment and human health, making the selection of appropriate analytical techniques crucial for accurately detecting these compounds in specific environments. Based on extensive literature research, this study summarized the development history, relevant features, and applicable scenarios of the main analytical techniques for atmospheric carbonyl compounds; pointed out the main problems and challenges in this field; and discussed the needs and prospects of future research and application. It was found that the direct sampling methods of atmospheric carbonyl compounds were applicable to low-molecular-weight carbonyl species with low reactivity, low boiling points, high polarity, and high volatility, while indirect sampling methods were suitable for a wider range and various types and phases of species. For formaldehyde, offline detection was primarily influenced by chemical reagents and reaction conditions, whereas online monitoring relied on sufficiently stable operating environments. For multiple carbonyl compounds, offline detection results were greatly influenced by detectors coupled with chromatography, whereas online monitoring techniques were applicable to all types of volatile organic compounds (VOCs), including some carbonyl compounds, providing higher temporal resolution and improved isomer identification with the development of online mass spectrometry. The combined use of proton transfer reaction-mass spectrometry (PTR-MS) and liquid chromatography-mass spectrometry (GC-MS) was suitable for the detection of carbonyl compounds in atmospheric photochemical smog chamber simulation studies. Currently, offline analytical techniques for carbonyl compounds require significant time and advanced experimental skills for multiple optimization experiments to detect a broader range of species. Online monitoring techniques face challenges such as poor stability and limited species coverage. In smog chamber simulation studies, the detection of carbonyl compounds is heavily influenced by both the sampling system and the chamber itself. Future efforts should focus on improving the environmental adaptability and automation of carbonyl compound analytical techniques, the synergistic use of various techniques, developing new sampling systems, and reducing the impact of the chamber itself on carbonyl compound detection, in order to enhance detection sensitivity, selectivity, time resolution, accuracy, and operability.
Title: Analytical Methods for Atmospheric Carbonyl Compounds: A Review
Description:
Atmospheric carbonyl compounds have significant impacts on the atmospheric environment and human health, making the selection of appropriate analytical techniques crucial for accurately detecting these compounds in specific environments.
Based on extensive literature research, this study summarized the development history, relevant features, and applicable scenarios of the main analytical techniques for atmospheric carbonyl compounds; pointed out the main problems and challenges in this field; and discussed the needs and prospects of future research and application.
It was found that the direct sampling methods of atmospheric carbonyl compounds were applicable to low-molecular-weight carbonyl species with low reactivity, low boiling points, high polarity, and high volatility, while indirect sampling methods were suitable for a wider range and various types and phases of species.
For formaldehyde, offline detection was primarily influenced by chemical reagents and reaction conditions, whereas online monitoring relied on sufficiently stable operating environments.
For multiple carbonyl compounds, offline detection results were greatly influenced by detectors coupled with chromatography, whereas online monitoring techniques were applicable to all types of volatile organic compounds (VOCs), including some carbonyl compounds, providing higher temporal resolution and improved isomer identification with the development of online mass spectrometry.
The combined use of proton transfer reaction-mass spectrometry (PTR-MS) and liquid chromatography-mass spectrometry (GC-MS) was suitable for the detection of carbonyl compounds in atmospheric photochemical smog chamber simulation studies.
Currently, offline analytical techniques for carbonyl compounds require significant time and advanced experimental skills for multiple optimization experiments to detect a broader range of species.
Online monitoring techniques face challenges such as poor stability and limited species coverage.
In smog chamber simulation studies, the detection of carbonyl compounds is heavily influenced by both the sampling system and the chamber itself.
Future efforts should focus on improving the environmental adaptability and automation of carbonyl compound analytical techniques, the synergistic use of various techniques, developing new sampling systems, and reducing the impact of the chamber itself on carbonyl compound detection, in order to enhance detection sensitivity, selectivity, time resolution, accuracy, and operability.

Related Results

The Directed Aldol Reaction
The Directed Aldol Reaction
Abstract The aldol reaction, usually carried out in protic solvents with base or acid as the catalyst, is one of the most versatile methods in organic synthesis. By appli...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
CLIMATE-2019 Program committee
CLIMATE-2019 Program committee
NOTITLE. Chairman Mokhov Igor RAS academecian, Dr. Sci., Professor ...
Single-image Shape and from Shading with Atmospheric Correction for Precise Topographic Reconstruction on Mars
Single-image Shape and from Shading with Atmospheric Correction for Precise Topographic Reconstruction on Mars
. Introduction Accurate and high-resolution digital elevation models (DEMs) are essential for Martian landing site selection and geological analysis [1]. However, existing photogra...
Synthesis of asymmetric phosphonate prodrugs
Synthesis of asymmetric phosphonate prodrugs
<p>The isoprenoid biosynthetic pathway is an essential metabolic system that is responsible for the production of one of the largest and most diverse ranges of biomolecules e...
Kinetics of adsorption carbonyl sulfide on selexsorb COS
Kinetics of adsorption carbonyl sulfide on selexsorb COS
The kinetics of adsorption of carbonyl sulfide on Selexsorb COS was studied. Selexsorb COS, an activated alumina adsorbent has been preferably impregnated with the metal compounds ...
Addition of Organochromium Reagents to Carbonyl Compounds
Addition of Organochromium Reagents to Carbonyl Compounds
AbstractOrganochromium compounds can be prepared by two methods: (1) transmetallation from the corresponding organolithium, ‐magnesium, or –zinc compounds with chromium(III) halide...
Synthesis, Docking and Antimicrobials Evaluation of Novel Pyrazolotriazines as RNA Polymerase Inhibitors
Synthesis, Docking and Antimicrobials Evaluation of Novel Pyrazolotriazines as RNA Polymerase Inhibitors
Aims: Producing novel pyrazolotriazines such as pyrazolo[1,5-a][1,3,5]triazine and pyrazolo[5,1-c][1,2,4]triazine derivatives and evaluate their biological activity as antimicrobia...

Back to Top