Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Post-Quantum Public-Key Cryptoschemes on Finite Algebras

View through CrossRef
One direction in the development of practical post-quantum public-key cryptographic algorithms is the use of finite algebras as their algebraic carrier. Two approaches in this direction are considered: 1) construction of electronic digital signature algorithms with a hidden group on non-commutative associative algebras and 2) construction of multidimensional cryptography algorithms using the exponential operation in a vector finite field (in a commutative algebra, which is a finite field) to specify a nonlinear mapping with a secret trapdoor. The first approach involves the development of two types of cryptoschemes: those based on the computational difficulty of a) the hidden discrete logarithm problem and b) solving a large system of quadratic equations. For the second type, problems arise in ensuring complete randomization of the digital signature and specifying non-commutative associative algebras of large dimension. Ways to solve these problems are discussed. The importance of studying the structure of finite non-commutative algebras from the point of view of decomposition into a set of commutative subalgebras is shown. Another direction is aimed at a significant (10 or more times) reduction in the size of the public key in multivariate-cryptography algorithms and is associated with the problem of developing formalized, parameterizable, unified methods for specifying vector finite fields of large dimensions (from 5 to 130) with a sufficiently large number of potentially implementable types and modifications each type (up to 2500 or more). Variants of such methods and topologies of nonlinear mappings on finite vector fields of various dimensions are proposed. It is shown that the use of mappings that specify the exponential operation in vector finite fields potentially eliminates the main drawback of known multivariate-cryptography algorithms, which is associated with the large size of the public key.
Title: Post-Quantum Public-Key Cryptoschemes on Finite Algebras
Description:
One direction in the development of practical post-quantum public-key cryptographic algorithms is the use of finite algebras as their algebraic carrier.
Two approaches in this direction are considered: 1) construction of electronic digital signature algorithms with a hidden group on non-commutative associative algebras and 2) construction of multidimensional cryptography algorithms using the exponential operation in a vector finite field (in a commutative algebra, which is a finite field) to specify a nonlinear mapping with a secret trapdoor.
The first approach involves the development of two types of cryptoschemes: those based on the computational difficulty of a) the hidden discrete logarithm problem and b) solving a large system of quadratic equations.
For the second type, problems arise in ensuring complete randomization of the digital signature and specifying non-commutative associative algebras of large dimension.
Ways to solve these problems are discussed.
The importance of studying the structure of finite non-commutative algebras from the point of view of decomposition into a set of commutative subalgebras is shown.
Another direction is aimed at a significant (10 or more times) reduction in the size of the public key in multivariate-cryptography algorithms and is associated with the problem of developing formalized, parameterizable, unified methods for specifying vector finite fields of large dimensions (from 5 to 130) with a sufficiently large number of potentially implementable types and modifications each type (up to 2500 or more).
Variants of such methods and topologies of nonlinear mappings on finite vector fields of various dimensions are proposed.
It is shown that the use of mappings that specify the exponential operation in vector finite fields potentially eliminates the main drawback of known multivariate-cryptography algorithms, which is associated with the large size of the public key.

Related Results

Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
Advanced frameworks for fraud detection leveraging quantum machine learning and data science in fintech ecosystems
The rapid expansion of the fintech sector has brought with it an increasing demand for robust and sophisticated fraud detection systems capable of managing large volumes of financi...
Advancements in Quantum Computing and Information Science
Advancements in Quantum Computing and Information Science
Abstract: The chapter "Advancements in Quantum Computing and Information Science" explores the fundamental principles, historical development, and modern applications of quantum co...
Finitely Presented Heyting Algebras
Finitely Presented Heyting Algebras
In this paper we study the structure of finitely presented Heyting<br />algebras. Using algebraic techniques (as opposed to techniques from proof-theory) we show that every s...
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
Integrating quantum neural networks with machine learning algorithms for optimizing healthcare diagnostics and treatment outcomes
The rapid advancements in artificial intelligence (AI) and quantum computing have catalyzed an unprecedented shift in the methodologies utilized for healthcare diagnostics and trea...
Quantum information outside quantum information
Quantum information outside quantum information
Quantum theory, as counter-intuitive as a theory can get, has turned out to make predictions of the physical world that match observations so precisely that it has been described a...
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
Revolutionizing multimodal healthcare diagnosis, treatment pathways, and prognostic analytics through quantum neural networks
The advent of quantum computing has introduced significant potential to revolutionize healthcare through quantum neural networks (QNNs), offering unprecedented capabilities in proc...
Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras
Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras
The purpose of this paper is to study the $\mathcal{O}$-operators on Malcev algebras and discuss the solutions of Malcev Yang-Baxter equation by $\mathcal{O}$-operators. Furthe...
Weak pseudo-BCK algebras
Weak pseudo-BCK algebras
Abstract In this paper we define and study the weak pseudo-BCK algebras as generalizations of weak BCK-algebras, extending some results given by Cı⃖rulis for weak BC...

Back to Top