Javascript must be enabled to continue!
Improvement effects of transplanting pancreatic islet that previously incubated with biomaterials on the diabetic nephropathy in STZ- diabetic rats
View through CrossRef
Abstract
Background
Islet transplantation is an effective treatment for diabetes or even its complications. Aim of this study is to investigate efficacy of biomaterial treated islet transplantation on treating diabetic nephropathy.
Methods
Male rats were randomly divided into 6 groups; Control, diabetic control, diabetic transplanted with untreated islets, with platelet rich plasma treated islets, with pancreatic islets homogenate treated islets, or with these biomaterials combination treated islets. Islets cultured with biomaterials and transplanted to diabetic rats. After 60 days, biochemical, oxidative stress, and stereological parameters were assessed.
Results
Serum albumin and BUN concentration, decreased and increased respectively, Oxidative stress of kidney impaired, kidney weight, volume of kidney, cortex, medulla, glomerulus, proximal and distal tubules, collecting ducts, vessels, inflammatory, necrotic and fibrotic tissue in diabetic group increased compared to control group (p < 0.001). In treated groups, especially pancreatic islets homogenate treated islets transplanting animals, there was significant changes in kidney weight, and volume of kidney, proximal and distal tubules, Henle’s loop and collecting ducts compared with diabetic group (p = 0.013 to p < 0.001). Combination treated islets animals showed significant increase in vessel volume compared to diabetic group (p < 0.001). Necrotic and fibrotic tissue significantly decreased in islets treated than untreated islet animals, it was higher in pancreatic islets homogenate, and combination treated islets groups (p = 0.001).
Conclusions
Biomaterials treated islets transplanting could improve diabetic nephropathy. Improvement of oxidative stress followed by controlling glucose level, and effects of growth factors presenting in biomaterials can be considered as capable underlying mechanism of ameliorating inflammatory, necrotic and fibrotic tissue volume.
Springer Science and Business Media LLC
Title: Improvement effects of transplanting pancreatic islet that previously incubated with biomaterials on the diabetic nephropathy in STZ- diabetic rats
Description:
Abstract
Background
Islet transplantation is an effective treatment for diabetes or even its complications.
Aim of this study is to investigate efficacy of biomaterial treated islet transplantation on treating diabetic nephropathy.
Methods
Male rats were randomly divided into 6 groups; Control, diabetic control, diabetic transplanted with untreated islets, with platelet rich plasma treated islets, with pancreatic islets homogenate treated islets, or with these biomaterials combination treated islets.
Islets cultured with biomaterials and transplanted to diabetic rats.
After 60 days, biochemical, oxidative stress, and stereological parameters were assessed.
Results
Serum albumin and BUN concentration, decreased and increased respectively, Oxidative stress of kidney impaired, kidney weight, volume of kidney, cortex, medulla, glomerulus, proximal and distal tubules, collecting ducts, vessels, inflammatory, necrotic and fibrotic tissue in diabetic group increased compared to control group (p < 0.
001).
In treated groups, especially pancreatic islets homogenate treated islets transplanting animals, there was significant changes in kidney weight, and volume of kidney, proximal and distal tubules, Henle’s loop and collecting ducts compared with diabetic group (p = 0.
013 to p < 0.
001).
Combination treated islets animals showed significant increase in vessel volume compared to diabetic group (p < 0.
001).
Necrotic and fibrotic tissue significantly decreased in islets treated than untreated islet animals, it was higher in pancreatic islets homogenate, and combination treated islets groups (p = 0.
001).
Conclusions
Biomaterials treated islets transplanting could improve diabetic nephropathy.
Improvement of oxidative stress followed by controlling glucose level, and effects of growth factors presenting in biomaterials can be considered as capable underlying mechanism of ameliorating inflammatory, necrotic and fibrotic tissue volume.
Related Results
Construction of the experimental rat model of gestational diabetes
Construction of the experimental rat model of gestational diabetes
Objective
Numerous methods for modeling gestational diabetes mellitus (GDM) in rats exist. However, their repeatability and stability are unclear. This study aimed to compare the e...
Effects of biomaterial-incubated pancreatic islet transplantation on liver dysfunction of STZ-diabetic rats
Effects of biomaterial-incubated pancreatic islet transplantation on liver dysfunction of STZ-diabetic rats
Abstract
Islet transplantation is one of the potential therapies for diabetes or even its subsequent complications. We aim to scrutinize the effectiveness of biomaterial-cu...
Progressive Islet Graft Failure Occurs Significantly Earlier in Autoantibody-Positive Than in Autoantibody-Negative IDDM Recipients of Intrahepatic Islet Allografts
Progressive Islet Graft Failure Occurs Significantly Earlier in Autoantibody-Positive Than in Autoantibody-Negative IDDM Recipients of Intrahepatic Islet Allografts
Alloimmunity has been uncovered to be a cause of graft loss representing a major barrier for clinical islet transplantation, and several studies are designed to evaluate new strate...
Effect of retinoic acid in experimental diabetic nephropathy
Effect of retinoic acid in experimental diabetic nephropathy
Although the pathogenetic mechanism of diabetic nephropathy has not been elucidated, an inflammatory mechanism has been suggested to contribute to its progression. Monocyte chemoat...
Diabetic Nephropathy: Advancement in Molecular Mechanism, Pathogenesis, and Management by Pharmacotherapeutics and Natural Compounds
Diabetic Nephropathy: Advancement in Molecular Mechanism, Pathogenesis, and Management by Pharmacotherapeutics and Natural Compounds
The primary cause of End-stage Renal Disease (ESRD) and a possible chronic microvascular
consequence of diabetes mellitus is Diabetic Nephropathy (DN). The early stages of diabetic...
CD4 and CXCR5 in Patients with Diabetic Nephropathy
CD4 and CXCR5 in Patients with Diabetic Nephropathy
Background: Diabetes is a metabolic condition characterized by hyperglycemia caused by defects in insulin secretion, insulin activity, or both. Diabetic nephropathy (DN) is one of ...
The Number of Teeth Is Associated with Diabetic Nephropathy
The Number of Teeth Is Associated with Diabetic Nephropathy
Background: Progression of diabetic nephropathy has serious effects on the life expectancy of diabetic patients. Although diagnoses, lifestyle interventions, and treatment of diabe...
Changes of Islet Size and Islet Size Distribution Resulting from Protein‐Malnutrition in Lean (Fa/Fa) and Obese (fa/fa) Zucker Rats
Changes of Islet Size and Islet Size Distribution Resulting from Protein‐Malnutrition in Lean (Fa/Fa) and Obese (fa/fa) Zucker Rats
AbstractTSE, ELIZABETH O, FRANCINE M GREGOIRE, BRIGITTE REUSENS, CLAUDE REMACLE, JOSEPH J HOET, PATRICIA R JOHNSON, JUDITH S STERN. Changes of islet size and islet size distributio...

