Javascript must be enabled to continue!
Optical Crystals for 1.3 μm All-Solid-State Passively Q-Switched Laser
View through CrossRef
In recent years, optical crystals for 1.3 μm all-solid-state passively Q-switched lasers have been widely studied due to their eye-safe band, atmospheric transmission characteristics, compactness, and low cost. They are widely used in the fields of high-precision laser radar, biomedical applications, and fine processing. In this review, we focus on three types of optical crystals used as the 1.3 μm laser gain media: neodymium-doped vanadate (Nd:YVO4, Nd:GdVO4, Nd:LuVO4, neodymium-doped aluminum-containing garnet (Nd:YAG, Nd:LuAG), and neodymium-doped gallium-containing garnet (Nd:GGG, Nd:GAGG, Nd:LGGG). In addition, other crystals such as Nd:KGW, Nd:YAP, Nd:YLF, and Nd:LLF are also discussed. First, we introduce the properties of the abovementioned 1.3 μm laser crystals. Then, the recent advances in domestic and foreign research on these optical crystals are summarized. Finally, the future challenges and development trend of 1.3 μm laser crystals are proposed. We believe this review will provide a comprehensive understanding of the optical crystals for 1.3 μm all-solid-state passively Q-switched lasers.
Title: Optical Crystals for 1.3 μm All-Solid-State Passively Q-Switched Laser
Description:
In recent years, optical crystals for 1.
3 μm all-solid-state passively Q-switched lasers have been widely studied due to their eye-safe band, atmospheric transmission characteristics, compactness, and low cost.
They are widely used in the fields of high-precision laser radar, biomedical applications, and fine processing.
In this review, we focus on three types of optical crystals used as the 1.
3 μm laser gain media: neodymium-doped vanadate (Nd:YVO4, Nd:GdVO4, Nd:LuVO4, neodymium-doped aluminum-containing garnet (Nd:YAG, Nd:LuAG), and neodymium-doped gallium-containing garnet (Nd:GGG, Nd:GAGG, Nd:LGGG).
In addition, other crystals such as Nd:KGW, Nd:YAP, Nd:YLF, and Nd:LLF are also discussed.
First, we introduce the properties of the abovementioned 1.
3 μm laser crystals.
Then, the recent advances in domestic and foreign research on these optical crystals are summarized.
Finally, the future challenges and development trend of 1.
3 μm laser crystals are proposed.
We believe this review will provide a comprehensive understanding of the optical crystals for 1.
3 μm all-solid-state passively Q-switched lasers.
Related Results
SIMPLE FORMS OF ZIRCON CRYSTALS FROM CRYSTALLINE ROCKS OF THE UKRAINIAN SHIELD AND THEIR MORPHOLOGICAL TYPES
SIMPLE FORMS OF ZIRCON CRYSTALS FROM CRYSTALLINE ROCKS OF THE UKRAINIAN SHIELD AND THEIR MORPHOLOGICAL TYPES
The main basics in geometric crystallography of zircon, developed by many researchers in the 18th - 20th centuries, are briefly described. The data of goniometric study of zircon f...
Ice Growth and Platelet Crystals in Antarctica
Ice Growth and Platelet Crystals in Antarctica
<p>First-year land-fast sea ice growth in both the Arctic and the Antarctic is characterised by the formation of an initial ice cover, followed by the direct freezing of seaw...
Continuous wave frequency modulated optical feedback (CWFM-OF) : theory and applications
Continuous wave frequency modulated optical feedback (CWFM-OF) : theory and applications
Diese Arbeit soll einen Beitrag leisten zur Entwicklung neuer Sensorstrategien, basierend auf Phänomenen der optischer Rückkopplung, in Kombination mit die Intensitätsmodulation de...
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
In recent years, more than 90% of the signal laser power can be up-converted based on the high-efficiency double resonant external cavity sum-frequency generation (SFG), especially...
Development of a high intensity Mid-Ir OPCPA pumped by a HO:YLF amplifier
Development of a high intensity Mid-Ir OPCPA pumped by a HO:YLF amplifier
The continuous development of laser sources delivering ultra-short light pulses underpins much of the current progress in experimental science, particularly in the domain of physic...
Excimer Laser Micromachining of MEMS Materials
Excimer Laser Micromachining of MEMS Materials
Conventional photolithography-based microfabrication techniques are limited to two-dimensional fabrication and only particular materials can be used. Excimer laser micromachining e...
Laser show safety for smaller shows: The ILDA category a laser show standard
Laser show safety for smaller shows: The ILDA category a laser show standard
The International Laser Display Association has developed a “Category A Standard” for laser shows that ILDA considers to be generally recognized as safe under the conditions of the...
Theoretical and experimental investigation of femtosecond laser processing fused silica
Theoretical and experimental investigation of femtosecond laser processing fused silica
By tracking the spatiotemporal distribution of the free electron density/temperature and laser intensity, the ablation threshold, depth and crater shape of fused silica for femtose...

