Javascript must be enabled to continue!
HAC stability in murine cells is influenced by nuclear localization and chromatin organization
View through CrossRef
Abstract
Background
Human artificial chromosomes (HAC) are small functional extrachromosomal elements, which segregate correctly during each cell division. In human cells, they are mitotically stable, however when the HAC are transferred to murine cells they show an increased and variable rate of loss. In some cell lines the HAC are lost over a short period of time, while in others the HAC become stable without acquiring murine DNA.
Results
In this study, we linked the loss rate to the position of the HAC in the murine cell nucleus with respect to the chromocenters. HAC that associated preferentially with the chromocenter displayed a lower loss rate compared to the HAC that are less frequently associated. The chromocenter acts as a hub for the deposition of heterochromatic markers, controlling centromeric and pericentromeric DNA replication timing and chromosome segregation. The HAC which localized more frequently outside the chromocenters bound variable amounts of histone H3 tri-methylated at lysine 9, and the high level of intraclonal variability was associated with an increase in HAC segregation errors and delayed DNA replication timing.
Conclusion
This is a novel result indicating that HAC segregation is closely linked to the position in the murine nucleus and gives important insight for HAC gene expression studies in murine cells and establishing murine models of human genetic disease.
Springer Science and Business Media LLC
Title: HAC stability in murine cells is influenced by nuclear localization and chromatin organization
Description:
Abstract
Background
Human artificial chromosomes (HAC) are small functional extrachromosomal elements, which segregate correctly during each cell division.
In human cells, they are mitotically stable, however when the HAC are transferred to murine cells they show an increased and variable rate of loss.
In some cell lines the HAC are lost over a short period of time, while in others the HAC become stable without acquiring murine DNA.
Results
In this study, we linked the loss rate to the position of the HAC in the murine cell nucleus with respect to the chromocenters.
HAC that associated preferentially with the chromocenter displayed a lower loss rate compared to the HAC that are less frequently associated.
The chromocenter acts as a hub for the deposition of heterochromatic markers, controlling centromeric and pericentromeric DNA replication timing and chromosome segregation.
The HAC which localized more frequently outside the chromocenters bound variable amounts of histone H3 tri-methylated at lysine 9, and the high level of intraclonal variability was associated with an increase in HAC segregation errors and delayed DNA replication timing.
Conclusion
This is a novel result indicating that HAC segregation is closely linked to the position in the murine nucleus and gives important insight for HAC gene expression studies in murine cells and establishing murine models of human genetic disease.
Related Results
Mesoscale Modeling of a Nucleosome-Binding Antibody (PL2-6): Mono- vs. Bivalent Chromatin Complexes
Mesoscale Modeling of a Nucleosome-Binding Antibody (PL2-6): Mono- vs. Bivalent Chromatin Complexes
ABSTRACTVisualizing chromatin adjacent to the nuclear envelope (denoted “epichromatin”) by in vitro immunostaining with a bivalent nucleosome-binding antibody (termed monoclonal an...
The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness
The Metabolic Enzyme Hexokinase 2 Localizes to the Nucleus in AML and Normal Hematopoietic Stem/Progenitor Cells to Maintain Stemness
Abstract
Hematopoietic cells are arranged in a hierarchy where stem and progenitor cells differentiate into mature blood cells. Likewise, AML (Acute Myeloid Leukemia...
Indoor Localization System Based on RSSI-APIT Algorithm
Indoor Localization System Based on RSSI-APIT Algorithm
An indoor localization system based on the RSSI-APIT algorithm is designed in this study. Integrated RSSI (received signal strength indication) and non-ranging APIT (approximate pe...
Megakaryocytes Support Viability Proliferation and Protection of Primary Pre-B ALL Cells from Chemotherapy
Megakaryocytes Support Viability Proliferation and Protection of Primary Pre-B ALL Cells from Chemotherapy
Abstract
BACKGROUND: The bone marrow is known to shelter leukemia cells from chemotherapy and contributes to the survival of chemotherapy resistant residual cells, t...
One Chaperone to Rule Them All: Deciphering How Chromatin is Assembled During DNA Replication
One Chaperone to Rule Them All: Deciphering How Chromatin is Assembled During DNA Replication
Genomic DNA, which governs cellular life, resides within the nucleus of every human cell. Inside each nucleus lies approximately two meters of DNA, posing a significant challenge, ...
Bridging the dynamics and organization of chromatin domains by mathematical modeling
Bridging the dynamics and organization of chromatin domains by mathematical modeling
AbstractThe genome is three-dimensionally organized in the cell, and the mammalian genome DNA is partitioned into submegabase-sized chromatin domains. Genome functions are regulate...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Abstract 1997: FAK inhibition induced FAK nuclear localization targets both tumor growth and angiogenesis
Abstract 1997: FAK inhibition induced FAK nuclear localization targets both tumor growth and angiogenesis
Abstract
Tumors are not a cell-autonomous event, as most tumors include non-neoplastic stromal cells, so-called tumor microenvironment (TME). The TME is the tumor's ...

