Javascript must be enabled to continue!
Plant Traits Help Explain the Tight Relationship between Vegetation Indices and Gross Primary Production
View through CrossRef
Remotely-sensed Vegetation Indices (VIs) are often tightly correlated with terrestrial ecosystem CO2 uptake (Gross Primary Production or GPP). These correlations have been exploited to infer GPP at local to global scales and over half-hour to decadal periods, though the underlying mechanisms remain incompletely understood. We used satellite remote sensing and eddy covariance observations at 10 sites across a California climate gradient to explore the relationships between GPP, the Enhanced Vegetation Index (EVI), the Normalized Difference Vegetation Index (NDVI), and the Near InfraRed Vegetation (NIRv) index. EVI and NIRv were linearly correlated with GPP across both space and time, whereas the relationship between NDVI and GPP was less general. We explored these interactions using radiative transfer and GPP models forced with in-situ plant trait and soil reflectance observations. GPP ultimately reflects the product of Leaf Area Index (LAI) and leaf level CO2 uptake (Aleaf); a VI that is sensitive mainly to LAI will lack generality across ecosystems that differ in Aleaf. EVI and NIRv showed a strong, multiplicative sensitivity to LAI and Leaf Mass per Area (LMA). LMA was correlated with Aleaf, and EVI and NIRv consequently mimic GPP’s multiplicative sensitivity to LAI and Aleaf, as mediated by LMA. NDVI was most sensitive to LAI, and was relatively insensitive to leaf properties over realistic conditions; NDVI lacked EVI and NIRv’s sensitivity to both LAI and Aleaf. These findings carry implications for understanding the limitations of current VIs for predicting GPP, and also for devising strategies to improve predictions of GPP.
Title: Plant Traits Help Explain the Tight Relationship between Vegetation Indices and Gross Primary Production
Description:
Remotely-sensed Vegetation Indices (VIs) are often tightly correlated with terrestrial ecosystem CO2 uptake (Gross Primary Production or GPP).
These correlations have been exploited to infer GPP at local to global scales and over half-hour to decadal periods, though the underlying mechanisms remain incompletely understood.
We used satellite remote sensing and eddy covariance observations at 10 sites across a California climate gradient to explore the relationships between GPP, the Enhanced Vegetation Index (EVI), the Normalized Difference Vegetation Index (NDVI), and the Near InfraRed Vegetation (NIRv) index.
EVI and NIRv were linearly correlated with GPP across both space and time, whereas the relationship between NDVI and GPP was less general.
We explored these interactions using radiative transfer and GPP models forced with in-situ plant trait and soil reflectance observations.
GPP ultimately reflects the product of Leaf Area Index (LAI) and leaf level CO2 uptake (Aleaf); a VI that is sensitive mainly to LAI will lack generality across ecosystems that differ in Aleaf.
EVI and NIRv showed a strong, multiplicative sensitivity to LAI and Leaf Mass per Area (LMA).
LMA was correlated with Aleaf, and EVI and NIRv consequently mimic GPP’s multiplicative sensitivity to LAI and Aleaf, as mediated by LMA.
NDVI was most sensitive to LAI, and was relatively insensitive to leaf properties over realistic conditions; NDVI lacked EVI and NIRv’s sensitivity to both LAI and Aleaf.
These findings carry implications for understanding the limitations of current VIs for predicting GPP, and also for devising strategies to improve predictions of GPP.
Related Results
Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang
Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang
Time-series normalized difference vegetation index (NDVI) is commonly used to conduct vegetation dynamics, which is an important research topic. However, few studies have focused o...
A vegetation classi?cation and map: Guadalupe Mountains National Park
A vegetation classi?cation and map: Guadalupe Mountains National Park
A vegetation classi?cation and map for Guadalupe Mountains National Park (NP) is presented as part of the National Park Service Inventory & Monitoring - Vegetation Inventory Pr...
High quality sustainable development of soil and water conservation vegetation
High quality sustainable development of soil and water conservation vegetation
The effect of vegetation on soil and water conservation increases with
the increase of planting density. At the same time, the degree of soil
drought increases with the increase of...
Realization and Prediction of Ecological Restoration Potential of Vegetation in Karst Areas
Realization and Prediction of Ecological Restoration Potential of Vegetation in Karst Areas
Based on the vegetation ecological quality index retrieved by satellite remote sensing in the karst areas of Guangxi in 2000–2019, the status of the ecological restoration of the v...
Monitoring vegetation dynamics using multi-temporal Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images of Tamil Nadu
Monitoring vegetation dynamics using multi-temporal Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) images of Tamil Nadu
Vegetation indices serve as an essential tool in monitoring variations in vegetation. The vegetation indices used often, viz., normalized difference vegetation index (NDVI) and enh...
Differentiation characteristics of karst vegetation resilience and its response to climate and ecological restoration projects
Differentiation characteristics of karst vegetation resilience and its response to climate and ecological restoration projects
AbstractIn light of the recent pressure from global warming, extreme drought events, and deleterious human activity, the strength and long‐term change trends of vegetation in karst...
Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China
Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China
Abstract. Alpine meadow is one of the most widespread grassland types in the permafrost regions of the Qinghai-Tibet Plateau, and the transmission of coupled soil water heat is one...
Decoupling and partitioning the effect of climate and afforestation on long‐term vegetation greening in China since the 1990s
Decoupling and partitioning the effect of climate and afforestation on long‐term vegetation greening in China since the 1990s
AbstractVegetation is an essential component of the Earth's surface system, and is a clear indicator to global climate changes. Understanding the long‐term characteristics of veget...


