Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Mutational Hotspots and Conserved Domains in P53 Tumour Suppressor Protein

View through CrossRef
Introduction: The tumour suppressor protein p53 commonly referred to as guardian of the genome plays important role in preserving the genome through the regulation of programmed cell death, DNA repair, energy metabolism, cell cycle entry or exit and senescence. Mutations in p53 can either result to a loss of tumour suppressor function or gain of oncogenic properties. Hence, mutations in p53 are the most frequent genetic mutational alteration in human cancers, associated with worse prognosis and more aggressive disease outcome. Methods: To assess the mutational hotspots and conserved regions of p53, I analyzed 76 complete p53 protein sequences covering whole exons from the NCBI GenBank database. Multiple sequence alignment (MSA) was done using ClustalX version 2.1. Results: Thirty-five (19) mutations were identified with more frequent mutations in amino acid (aa) position 72 and 79 (Exon 4), amino acid deletion in codon 112-122 (Exon 4), codon 213 (Exon 6), codon 248 (Exon 7), codon 273 (Exon 8) and codon 278 (Exon 8). Mutations at amino acid position 79, 248, 278 located in the DNA-binding domain exhibited more than one alteration in same position. Conclusions: Findings from this study revealed the prevalence of mutations in the DNA binding domain of p53 and the structure-function effect of the mutations. Assessing the pattern and frequency of p53 alterations, and analyzing it thoroughly for each carrier, could help in identifying correlations between p53 status and outcome and possible candidate for gene therapy.
Title: Mutational Hotspots and Conserved Domains in P53 Tumour Suppressor Protein
Description:
Introduction: The tumour suppressor protein p53 commonly referred to as guardian of the genome plays important role in preserving the genome through the regulation of programmed cell death, DNA repair, energy metabolism, cell cycle entry or exit and senescence.
Mutations in p53 can either result to a loss of tumour suppressor function or gain of oncogenic properties.
Hence, mutations in p53 are the most frequent genetic mutational alteration in human cancers, associated with worse prognosis and more aggressive disease outcome.
Methods: To assess the mutational hotspots and conserved regions of p53, I analyzed 76 complete p53 protein sequences covering whole exons from the NCBI GenBank database.
Multiple sequence alignment (MSA) was done using ClustalX version 2.
1.
Results: Thirty-five (19) mutations were identified with more frequent mutations in amino acid (aa) position 72 and 79 (Exon 4), amino acid deletion in codon 112-122 (Exon 4), codon 213 (Exon 6), codon 248 (Exon 7), codon 273 (Exon 8) and codon 278 (Exon 8).
Mutations at amino acid position 79, 248, 278 located in the DNA-binding domain exhibited more than one alteration in same position.
Conclusions: Findings from this study revealed the prevalence of mutations in the DNA binding domain of p53 and the structure-function effect of the mutations.
Assessing the pattern and frequency of p53 alterations, and analyzing it thoroughly for each carrier, could help in identifying correlations between p53 status and outcome and possible candidate for gene therapy.

Related Results

Abstract 599: Id4 acts as a tumor suppressor by inducing apoptosis and senescence in p53-dependent manner
Abstract 599: Id4 acts as a tumor suppressor by inducing apoptosis and senescence in p53-dependent manner
Abstract The physiological mechanisms that can restore biological activity of mutant p53 is an area of high interest given that mutant p53 expression is observed in ...
Jun Dimerization Protein 2 (JDP2) Increases p53 Transactivation by Decreasing MDM2
Jun Dimerization Protein 2 (JDP2) Increases p53 Transactivation by Decreasing MDM2
The AP-1 protein complex primarily consists of several proteins from the c-Fos, c-Jun, activating transcription factor (ATF), and Jun dimerization protein (JDP) families. JDP2 has ...
Abstract 1728: Overactivation of tumor suppressor P53 in hepatocytes promotes hepatocarcinogenesis
Abstract 1728: Overactivation of tumor suppressor P53 in hepatocytes promotes hepatocarcinogenesis
Abstract Aim: p53 is a tumor suppressor and its dysfunction promotes carcinogenesis of several organs including the liver. Meanwhile, p53 is reported to be overactiv...
Adenovirus E1-transformed cells grow despite the continuous presence of transcriptionally active p53
Adenovirus E1-transformed cells grow despite the continuous presence of transcriptionally active p53
The E1 region of adenovirus (Ad) type 5 is capable of transforming cells. According to current concepts, the Ad E1B 55 kDa (E1B 55K) protein enables transformed cells to grow by co...
Abstract 1716: A small molecule corrector for p53 mutants found in cancer
Abstract 1716: A small molecule corrector for p53 mutants found in cancer
Abstract p53 is the main tumor suppressor protein in vertebrates and the most frequently mutated gene in human cancers. The majority of p53 mutations are missense mu...
Id4 dependent acetylation restores mutant-p53 transcriptional activity
Id4 dependent acetylation restores mutant-p53 transcriptional activity
Abstract Background The mechanisms that can restore biological activity of mutant p53 are an area of high interest given that mutant p53 expressi...

Back to Top