Javascript must be enabled to continue!
Equivalent Biot and Skempton coefficients for fractured rocks
View through CrossRef
Biot coefficient and Skempton coefficient are key descriptors of the coupled hydro-mechanical (HM) behavior of fluid-saturated porous materials. Biot coefficient defines a relationship between an applied load, fluid pressure and the stress that effectively acts on the solid skeleton. Skempton coefficient defines the temporary pore pressure variation caused by the application of a load in undrained conditions. The product of the two coefficients establishes the impact of an applied load on the solid skeleton, and thus the material deformation, under undrained conditions. The two coefficients are generally estimated through analytical expressions valid for isotropic homogeneous materials, or they are experimentally estimated at the laboratory sample-scale.In this work, we define a framework for the evaluation of equivalent Biot coefficient and Skempton coefficient at the scale of a fractured rock mass. We derive theoretical expressions that estimate the two equivalent coefficients from the properties of both the porous intact rock and the discrete fracture network (DFN), including fractures with different orientation, size, and mechanical properties. These formal expressions are validated against results from fully coupled hydro-mechanical simulations on systems with explicit representation of deformable fractures and rock blocks. We show that the coefficients largely vary with the fracture orientation and density, which implies that disregarding the presence of fractures may incur an incorrect evaluation of the HM response. We also discuss the variability of the coefficients under different settings of DFN properties, including realistic scaling conditions of size-dependent and stress-dependent fracture properties.
Copernicus GmbH
Title: Equivalent Biot and Skempton coefficients for fractured rocks
Description:
Biot coefficient and Skempton coefficient are key descriptors of the coupled hydro-mechanical (HM) behavior of fluid-saturated porous materials.
Biot coefficient defines a relationship between an applied load, fluid pressure and the stress that effectively acts on the solid skeleton.
Skempton coefficient defines the temporary pore pressure variation caused by the application of a load in undrained conditions.
The product of the two coefficients establishes the impact of an applied load on the solid skeleton, and thus the material deformation, under undrained conditions.
The two coefficients are generally estimated through analytical expressions valid for isotropic homogeneous materials, or they are experimentally estimated at the laboratory sample-scale.
In this work, we define a framework for the evaluation of equivalent Biot coefficient and Skempton coefficient at the scale of a fractured rock mass.
We derive theoretical expressions that estimate the two equivalent coefficients from the properties of both the porous intact rock and the discrete fracture network (DFN), including fractures with different orientation, size, and mechanical properties.
These formal expressions are validated against results from fully coupled hydro-mechanical simulations on systems with explicit representation of deformable fractures and rock blocks.
We show that the coefficients largely vary with the fracture orientation and density, which implies that disregarding the presence of fractures may incur an incorrect evaluation of the HM response.
We also discuss the variability of the coefficients under different settings of DFN properties, including realistic scaling conditions of size-dependent and stress-dependent fracture properties.
Related Results
Differences in Geochemical Signatures and Petrogenesis between the Van Canh and Ben Giang-Que Son Granitic Rocks in the Southern Kontum Massif, Vietnam
Differences in Geochemical Signatures and Petrogenesis between the Van Canh and Ben Giang-Que Son Granitic Rocks in the Southern Kontum Massif, Vietnam
Permian Ben Giang-Que Son and Triassic Van Canh granitic rocks are widely distributed across the southern Kontum Massif, the basement of which consists mainly of metasedimentary ro...
SIMPLE FORMS OF ZIRCON CRYSTALS FROM CRYSTALLINE ROCKS OF THE UKRAINIAN SHIELD AND THEIR MORPHOLOGICAL TYPES
SIMPLE FORMS OF ZIRCON CRYSTALS FROM CRYSTALLINE ROCKS OF THE UKRAINIAN SHIELD AND THEIR MORPHOLOGICAL TYPES
The main basics in geometric crystallography of zircon, developed by many researchers in the 18th - 20th centuries, are briefly described. The data of goniometric study of zircon f...
Low resilience of fractured groundwater systems to climate change and human activities
Low resilience of fractured groundwater systems to climate change and human activities
Groundwater, as an essential and dynamic part of hydrosphere, sustains the water demands and livelihoods in diverse landscapes and ecosystems. Currently, understanding on groundwat...
Three-dimensional Morphological Analysis of Martian Rocks Using Zhurong Rover NaTeCam Images
Three-dimensional Morphological Analysis of Martian Rocks Using Zhurong Rover NaTeCam Images
This research delves into the three-dimensional (3D) morphological characteristics of Martian rocks, utilizing high-resolution images captured by the NaTeCam of China's Zhurong rov...
Production Performance Analysis of Hydraulically Fractured Horizontal Wells in Sulige Gas Field
Production Performance Analysis of Hydraulically Fractured Horizontal Wells in Sulige Gas Field
Abstract
Sulige gas field is the largest tight sand gas field in China. In order to boost gas production of individual wells and to maximize economic return, hydr...
Hydrydrocarbon Generetion & Natural Gas Accumulation In The Southern Margin Of Junggar Basin
Hydrydrocarbon Generetion & Natural Gas Accumulation In The Southern Margin Of Junggar Basin
Abstract
1. In the southern margin area, four sets of source rocks including Permian, Jurassic, Cretaceous and Tertiary source rocks are developed, and their dist...
Pennsylvanian Rocks of New England
Pennsylvanian Rocks of New England
Abstract
Several basins of probable Pennsylvanian rocks are downfolded or downfaulted into the older rocks of New England. The largest of these, and definitely of Pe...
Quantifying the Sensitivity of Dielectric Dispersion Data to Fracture Properties in Fractured Rocks
Quantifying the Sensitivity of Dielectric Dispersion Data to Fracture Properties in Fractured Rocks
Evaluation of fluid storage and flow capacity of a fractured rock system needs a comprehensive characterization of all the fracture properties. These properties include the fractur...

