Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Cadmium‐induced Cytosolic Ca2+ Elevation and Subsequent Apoptosis in Renal Tubular Cells

View through CrossRef
Abstract: Cadmium (Cd2+) is an industrial and environmental metal. The effect of Cd2+ on intracellular free‐Ca2+ levels ([Ca2+]i) and viability in Madin Darby canine kidney cells was explored. Cd2+increased [Ca2+]i in a concentration‐dependent manner with an EC50 of 85 µM. Cd2+‐induced Mn2+ entry demonstrated Ca2+ influx. Removal of extracellular Ca2+ decreased the [Ca2+]i signal by 60%. The [Ca2+]i signal was inhibited by La3+ but not by L‐type Ca2+ channel blockers. In Ca2+‐free medium, Cd2+‐induced [Ca2+]i signal was abolished by pre‐treatment with 1 µM thapsigargin (an endoplasmic reticulum Ca2+pump inhibitor) and 2 µM carbonylcyanide m‐chlorophenylhydrazone (CCCP; a mitochondrial uncoupler). Cd2+‐induced Ca2+ release was not altered by inhibition of phospholipase C. At concentrations between 10 and 100 µM, Cd2+killed cells in a concentration‐dependent manner. The cytotoxic effect of 100 µM Cd2+was reversed by pre‐chelating cytosolic Ca2+with BAPTA. Cd2+‐induced apoptosis was demonstrated by propidium iodide. Collectively, this study shows that Cd2+ induced a [Ca2+]i increase in Madin Darby canine kidney cells via evoking Ca2+ entry through non‐selective Ca2+ channels, and releasing stored Ca2+ from endoplasmic reticulum and mitochondria in a phospholipase C‐independent manner.
Title: Cadmium‐induced Cytosolic Ca2+ Elevation and Subsequent Apoptosis in Renal Tubular Cells
Description:
Abstract: Cadmium (Cd2+) is an industrial and environmental metal.
The effect of Cd2+ on intracellular free‐Ca2+ levels ([Ca2+]i) and viability in Madin Darby canine kidney cells was explored.
Cd2+increased [Ca2+]i in a concentration‐dependent manner with an EC50 of 85 µM.
Cd2+‐induced Mn2+ entry demonstrated Ca2+ influx.
Removal of extracellular Ca2+ decreased the [Ca2+]i signal by 60%.
The [Ca2+]i signal was inhibited by La3+ but not by L‐type Ca2+ channel blockers.
In Ca2+‐free medium, Cd2+‐induced [Ca2+]i signal was abolished by pre‐treatment with 1 µM thapsigargin (an endoplasmic reticulum Ca2+pump inhibitor) and 2 µM carbonylcyanide m‐chlorophenylhydrazone (CCCP; a mitochondrial uncoupler).
Cd2+‐induced Ca2+ release was not altered by inhibition of phospholipase C.
At concentrations between 10 and 100 µM, Cd2+killed cells in a concentration‐dependent manner.
The cytotoxic effect of 100 µM Cd2+was reversed by pre‐chelating cytosolic Ca2+with BAPTA.
Cd2+‐induced apoptosis was demonstrated by propidium iodide.
Collectively, this study shows that Cd2+ induced a [Ca2+]i increase in Madin Darby canine kidney cells via evoking Ca2+ entry through non‐selective Ca2+ channels, and releasing stored Ca2+ from endoplasmic reticulum and mitochondria in a phospholipase C‐independent manner.

Related Results

Ca2+ entry through Na(+)‐Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na(+)‐loaded guinea‐pig coronary myocytes.
Ca2+ entry through Na(+)‐Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na(+)‐loaded guinea‐pig coronary myocytes.
1. The ionized cytosolic calcium concentration ([Ca2+]i) was monitored in voltage‐clamped coronary myocytes at 36 degrees C and 2.5 mM [Ca2+]o using the Ca2+ indicator indo‐1. [Ca2...
Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake
Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake
Key points Cytosolic, but not matrix, Mg2+ inhibits mitochondrial Ca2+ uptake through the Ca2+ uniporter (CU). The majority of mitochondrial Ca2+ uptake under physiological levels ...
A basic model of calcium homeostasis in non-excitable cells
A basic model of calcium homeostasis in non-excitable cells
AbstractThe level of cytosolic calcium (Ca2+) in cells is tightly regulated to about 100 nM (pCa ≈ 7). Due to external stimuli, the basal cytosolic Ca2+level can temporarily be rai...
Protein carbonylation causes sarcoplasmic reticulum Ca2+ overload by increasing intracellular Na+ level in ventricular myocytes
Protein carbonylation causes sarcoplasmic reticulum Ca2+ overload by increasing intracellular Na+ level in ventricular myocytes
Abstract Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes...
Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx
Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx
ABSTRACT Influx of extracellular Ca2+ plays a major role in the activation of contraction in fish cardiac cells. The relative contributions of Na+/Ca2+ exchange and ...
Regulation of cochlear hair cell function by intracellular calcium stores
Regulation of cochlear hair cell function by intracellular calcium stores
IntroductionMammalian hearing depends on the dual mechanosensory and motor functions of cochlear hair cells. Both these functions may be regulated by Ca2+ release from intracellula...
Spatial And Functional Coupling of The L‐Type Ca2+ Channel Cav1.2 with Ca2+‐Induced Ca2+ Release And cAMP Accumulation in INS‐1 cells
Spatial And Functional Coupling of The L‐Type Ca2+ Channel Cav1.2 with Ca2+‐Induced Ca2+ Release And cAMP Accumulation in INS‐1 cells
Exposure of pancreatic β‐cells to glucose generates concomitant oscillations in Ca2+ and cAMP which regulate insulin secretion, an essential function of β‐cells that promotes gluco...

Back to Top