Javascript must be enabled to continue!
Bone marrow-derived cells contribute to contractile dysfunction in endotoxic shock
View through CrossRef
How infection precipitates depressed contractility is incompletely understood but may involve the immune, nervous, and endocrine systems as well as the heart itself. In this study, we examined the role of Toll-like receptor 4 (TLR4) in LPS-induced myocardial contractile depression. Eighteen hours following endotoxin challenge, we compared contractile responses in hearts from wild-type (WT) and TLR4-deficient mice using modified Langendorff preparations. Unlike hearts from WT mice, TLR4-deficient hearts did not reveal significant contractile dysfunction following LPS administration, as measured by decreased responses in maximal left ventricular pressure, +dP/d tmax, and −dP/d tmaxin ex vivo Langendorff preparations. These findings indicate a requirement for TLR4 in LPS-induced contractile depression. To determine the contribution of bone marrow-derived TLR4 function to LPS-induced myocardial dysfunction, we generated TLR4 chimeras using adoptive transfer between histocompatible mouse strains: either TLR4-deficient mice with TLR4+/+ bone marrow-derived cells or TLR4+/+ animals lacking TLR4 in their hematopoietic cells. We then compared the contractile responses of engrafted animals after LPS challenges. Engraftment of TLR4-deficient mice with WT marrow restored sensitivity to the myocardial depressant effects of LPS in TLR4-deficient hearts ( P < 0.05). Inactivation of bone marrow-derived TLR4 function, via transplantation of WT mice with TLR4−/− marrow, however, did not protect against the depressant effect of endotoxin. These findings indicate that bone marrow-derived TLR4 activity is sufficient to confer sensitivity to mice lacking TLR4 in all other tissues. However, because inactivation of marrow-derived TLR4 function alone does not protect against endotoxin-triggered contractile dysfunction, TLR4 function in other tissues may also contribute to this response.
Title: Bone marrow-derived cells contribute to contractile dysfunction in endotoxic shock
Description:
How infection precipitates depressed contractility is incompletely understood but may involve the immune, nervous, and endocrine systems as well as the heart itself.
In this study, we examined the role of Toll-like receptor 4 (TLR4) in LPS-induced myocardial contractile depression.
Eighteen hours following endotoxin challenge, we compared contractile responses in hearts from wild-type (WT) and TLR4-deficient mice using modified Langendorff preparations.
Unlike hearts from WT mice, TLR4-deficient hearts did not reveal significant contractile dysfunction following LPS administration, as measured by decreased responses in maximal left ventricular pressure, +dP/d tmax, and −dP/d tmaxin ex vivo Langendorff preparations.
These findings indicate a requirement for TLR4 in LPS-induced contractile depression.
To determine the contribution of bone marrow-derived TLR4 function to LPS-induced myocardial dysfunction, we generated TLR4 chimeras using adoptive transfer between histocompatible mouse strains: either TLR4-deficient mice with TLR4+/+ bone marrow-derived cells or TLR4+/+ animals lacking TLR4 in their hematopoietic cells.
We then compared the contractile responses of engrafted animals after LPS challenges.
Engraftment of TLR4-deficient mice with WT marrow restored sensitivity to the myocardial depressant effects of LPS in TLR4-deficient hearts ( P < 0.
05).
Inactivation of bone marrow-derived TLR4 function, via transplantation of WT mice with TLR4−/− marrow, however, did not protect against the depressant effect of endotoxin.
These findings indicate that bone marrow-derived TLR4 activity is sufficient to confer sensitivity to mice lacking TLR4 in all other tissues.
However, because inactivation of marrow-derived TLR4 function alone does not protect against endotoxin-triggered contractile dysfunction, TLR4 function in other tissues may also contribute to this response.
Related Results
Arhgap21 Expression in Bone Marrow Niche Is Crucial for Hematopoietic Progenitor Homing and Short Term Reconstitution after Transplantation
Arhgap21 Expression in Bone Marrow Niche Is Crucial for Hematopoietic Progenitor Homing and Short Term Reconstitution after Transplantation
Abstract
The microenvironment of the bone marrow (BM) is essential for retention and migration of hematopoietic progenitor cells. ARHGAP21 is a negative regulator of...
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Objectives: Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily that were first discovered by Marshall Urist. There are 14 BMPs identified to da...
p62 Signaling Is Increased in Multiple Myeloma Microenvironment.
p62 Signaling Is Increased in Multiple Myeloma Microenvironment.
Abstract
The bone microenvironment plays a critical role in promoting both tumor growth and bone destruction in myeloma (MM). Marrow stromal cells produce factors, w...
Could rituximab be a silver lining in refractory bone marrow fibrosis caused by lupus?
Could rituximab be a silver lining in refractory bone marrow fibrosis caused by lupus?
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that can present with a variety of clinical manifestations, ranging from mild skin involvement to multisystemic ...
Automatic Bone Marrow Cell Identification and Classification By Deep Neural Network
Automatic Bone Marrow Cell Identification and Classification By Deep Neural Network
Purpose
Differential counting of blood cells is the basis of diagnostic hematology. In many circumstances, identification of cells in bone marrow smears is the golde...
The irradiated human mandible
The irradiated human mandible
Mandibular bone is known to be susceptible to irradiation damage, especially when radiation dose exceeds 50 Gy. This can result in compromised wound healing and ultimately osteorad...
Role of the Chemokine Receptor CXCR4 in Waldenstrom Macroglobulinemia.
Role of the Chemokine Receptor CXCR4 in Waldenstrom Macroglobulinemia.
Abstract
Waldenstrom Macroglobulinemia (WM) is characterized by the presence of lymphoplasmacytic cells in the bone marrow, and often in the lymph nodes. The mechani...
Inhibition of Calcitonin Gene-Related Peptide and Insulin-Like Growth Factor: A Potential New Therapeutic Strategy To Reduce Bone Pain in Bone Metastases of Breast Cancer.
Inhibition of Calcitonin Gene-Related Peptide and Insulin-Like Growth Factor: A Potential New Therapeutic Strategy To Reduce Bone Pain in Bone Metastases of Breast Cancer.
Abstract
Bone pain caused by bone metastases is one of the most common complications in patients with breast cancer. However, the precise molecular mechanism of bone...


