Javascript must be enabled to continue!
Impact of extreme climate eventson spring vegetation phenologyof Mongolia
View through CrossRef
The increasing frequency of extreme climate events may significantly alter the species composition, structure, and functionality of ecosystems, thereby diminishing their stability and resilience. This study draws on temperature and precipitation data from 53 meteorological stations across Mongolia, covering the period from 1983 to 2016, along with MODIS normalized difference vegetation index (NDVI) data from 2001 to 2016. The climate anomaly method and the curvature method of cumulative NDVI logistic curves were employed to identify years of extreme climate events and to extract the start of the growing season (SOS) in Mongolia. Furthermore, the study assessed the impact of extreme climate events on the SOS across different vegetation types and evaluated the sensitivity of the SOS to extreme climate indices. The study results show that, compared to the multi-year average green-up period from 2001 to 2016, extreme climate events significantly impact the SOS. Extreme dryness advanced the SOS by 6.9 days, extreme wetness by 2.5 days, and extreme warmth by 13.2 days, while extreme cold delayed the SOS by 1.2 days. During extreme drought event, the sensitivity of SOS to TN90p (warm nights) was the highest; in extremely wet years, the sensitivity of SOS to TX10p (cool days) was the strongest; in extreme warm event, SOS was most sensitive to TX90p (warm days); and during extreme cold events, SOS was most sensitive to TNx (maximum night temperature). Overall, the SOS was most sensitive to extreme temperature indices during extreme climate events, with a predominantly negative sensitivity. The response and sensitivity of SOS to extreme climate events varied across different vegetation types. This is crucial for understanding the dynamic changes of ecosystems and assessing potential ecological risks.
National University of Mongolia
Title: Impact of extreme climate eventson spring vegetation phenologyof Mongolia
Description:
The increasing frequency of extreme climate events may significantly alter the species composition, structure, and functionality of ecosystems, thereby diminishing their stability and resilience.
This study draws on temperature and precipitation data from 53 meteorological stations across Mongolia, covering the period from 1983 to 2016, along with MODIS normalized difference vegetation index (NDVI) data from 2001 to 2016.
The climate anomaly method and the curvature method of cumulative NDVI logistic curves were employed to identify years of extreme climate events and to extract the start of the growing season (SOS) in Mongolia.
Furthermore, the study assessed the impact of extreme climate events on the SOS across different vegetation types and evaluated the sensitivity of the SOS to extreme climate indices.
The study results show that, compared to the multi-year average green-up period from 2001 to 2016, extreme climate events significantly impact the SOS.
Extreme dryness advanced the SOS by 6.
9 days, extreme wetness by 2.
5 days, and extreme warmth by 13.
2 days, while extreme cold delayed the SOS by 1.
2 days.
During extreme drought event, the sensitivity of SOS to TN90p (warm nights) was the highest; in extremely wet years, the sensitivity of SOS to TX10p (cool days) was the strongest; in extreme warm event, SOS was most sensitive to TX90p (warm days); and during extreme cold events, SOS was most sensitive to TNx (maximum night temperature).
Overall, the SOS was most sensitive to extreme temperature indices during extreme climate events, with a predominantly negative sensitivity.
The response and sensitivity of SOS to extreme climate events varied across different vegetation types.
This is crucial for understanding the dynamic changes of ecosystems and assessing potential ecological risks.
Related Results
Inner Mongolia, Outer Mongolia
Inner Mongolia, Outer Mongolia
The Mongolian Empire, which reigned over the Eurasia Continent, was a great empire in the Middle Ages. Now, however, it is a divided nation, with a current population of about 10 m...
Climate and Culture
Climate and Culture
Climate is, presently, a heatedly discussed topic. Concerns about the environmental, economic, political and social consequences of climate change are of central interest in academ...
Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang
Incorporating Vegetation Type Transformation with NDVI Time-Series to Study the Vegetation Dynamics in Xinjiang
Time-series normalized difference vegetation index (NDVI) is commonly used to conduct vegetation dynamics, which is an important research topic. However, few studies have focused o...
Decoupling and partitioning the effect of climate and afforestation on long‐term vegetation greening in China since the 1990s
Decoupling and partitioning the effect of climate and afforestation on long‐term vegetation greening in China since the 1990s
AbstractVegetation is an essential component of the Earth's surface system, and is a clear indicator to global climate changes. Understanding the long‐term characteristics of veget...
A Synergistic Imperative: An Integrated Policy and Education Framework for Navigating the Climate Nexus
A Synergistic Imperative: An Integrated Policy and Education Framework for Navigating the Climate Nexus
Climate change acts as a systemic multiplier of threats, exacerbating interconnected global crises that jeopardize food security, biodiversity, and environmental health. These chal...
Realization and Prediction of Ecological Restoration Potential of Vegetation in Karst Areas
Realization and Prediction of Ecological Restoration Potential of Vegetation in Karst Areas
Based on the vegetation ecological quality index retrieved by satellite remote sensing in the karst areas of Guangxi in 2000–2019, the status of the ecological restoration of the v...
A vegetation classi?cation and map: Guadalupe Mountains National Park
A vegetation classi?cation and map: Guadalupe Mountains National Park
A vegetation classi?cation and map for Guadalupe Mountains National Park (NP) is presented as part of the National Park Service Inventory & Monitoring - Vegetation Inventory Pr...
Impact of Extreme Climate on the NDVI of Different Steppe Areas in Inner Mongolia, China
Impact of Extreme Climate on the NDVI of Different Steppe Areas in Inner Mongolia, China
The frequency of extreme climate events has increased resulting in major changes to vegetation in arid and semi-arid areas. We selected 12 extreme climate indices and used trend an...

