Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Computer vision-aided bioprinting for bone research

View through CrossRef
AbstractBioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair. The insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that prevents widespread utilization of bioprinting, especially for bone design with high-resolution requirements. During the last five years, the use of computer vision for process control has been widely practiced in the manufacturing field. Computer vision can improve the performance of bioprinting for bone research with respect to various aspects, including accuracy, resolution, and cell survival rate. Hence, computer vision plays a substantial role in addressing the current defect problem in bioprinting for bone research. In this review, recent advances in the application of computer vision in bioprinting for bone research are summarized and categorized into three groups based on different defect types: bone scaffold process control, deep learning, and cell viability models. The collection of printing parameters, data processing, and feedback of bioprinting information, which ultimately improves printing capabilities, are further discussed. We envision that computer vision may offer opportunities to accelerate bioprinting development and provide a new perception for bone research.
Title: Computer vision-aided bioprinting for bone research
Description:
AbstractBioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair.
The insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that prevents widespread utilization of bioprinting, especially for bone design with high-resolution requirements.
During the last five years, the use of computer vision for process control has been widely practiced in the manufacturing field.
Computer vision can improve the performance of bioprinting for bone research with respect to various aspects, including accuracy, resolution, and cell survival rate.
Hence, computer vision plays a substantial role in addressing the current defect problem in bioprinting for bone research.
In this review, recent advances in the application of computer vision in bioprinting for bone research are summarized and categorized into three groups based on different defect types: bone scaffold process control, deep learning, and cell viability models.
The collection of printing parameters, data processing, and feedback of bioprinting information, which ultimately improves printing capabilities, are further discussed.
We envision that computer vision may offer opportunities to accelerate bioprinting development and provide a new perception for bone research.

Related Results

Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Poster 107: The Use of Coacervate Sustained Release System to Identify the Most Potent BMP for Bone Regeneration
Objectives: Bone morphogenetic proteins (BMPs) belong to the transforming growth factor superfamily that were first discovered by Marshall Urist. There are 14 BMPs identified to da...
Depth-aware salient object segmentation
Depth-aware salient object segmentation
Object segmentation is an important task which is widely employed in many computer vision applications such as object detection, tracking, recognition, and ret...
INTELLECTUAL PROPERTY RIGHTS FOR 3D BIOPRINTING IN MALAYSIA
INTELLECTUAL PROPERTY RIGHTS FOR 3D BIOPRINTING IN MALAYSIA
Additive manufacturing in the field of tissue engineering has evolved rapidly over the past few decades. 3D bioprinting is an extendedapplication of additive manufacturing that inv...
3D Bioprinting: Introduction and Recent Advancement
3D Bioprinting: Introduction and Recent Advancement
In the additive manufacturing method known as 3D bioprinting, living cells and nutrients are joined with organic and biological components to produce synthetic structures that rese...
Bioprinting technologies in ophthalmology
Bioprinting technologies in ophthalmology
Bioprinting allows additive fabrication of bioengineered constructs with defined two- or three-dimensional organization using live cells, biopolymers and other materials. This arti...
Fundamentals of 3D Bioprinting Technology
Fundamentals of 3D Bioprinting Technology
3D bioprinting consists in the printing of synthetic 3D structures used as biomaterials, along with cells, growth factors, and other components necessary to create a new functional...
3D bioprinting–a step towards heart tissue regeneration
3D bioprinting–a step towards heart tissue regeneration
Heart disease and cardiovascular disease is a very serious and growing public health issue. Tissue-engineering has great potential and great strength for regeneration, remolding, a...
The irradiated human mandible
The irradiated human mandible
Mandibular bone is known to be susceptible to irradiation damage, especially when radiation dose exceeds 50 Gy. This can result in compromised wound healing and ultimately osteorad...

Back to Top