Javascript must be enabled to continue!
The Construction of Fuzzy Prediction Model of Stock Price Rise and Fall Based on Machine Learning Technology
View through CrossRef
In recent years, the use of smart data analysis method to predict the stock price is financial technology; important issues in the field of finch. However, there are many technical indicators and human subjective factors will affect the stock price forecast, so we must effectively grasp the important influence indicators to improve the accuracy of stock price forecast. Therefore, this study uses four machine learning algorithms to predict and analyze the stock price fluctuation through the screening process of technical indicators, and then selects the important technical indicators. In addition, due to the uncertainty and fuzziness of the attributes of technical indicators and human subjective judgment, this study uses the fuzzy inference method to construct the fuzzy inference system to predict the rise and fall of stock price, and proposes the prediction method of the range of the rise and fall of stock price. Finally, this paper makes an empirical analysis on the stock price data of three companies. The results show that the accuracy of stock price forecast is more than 82.13%, and the average accuracy of stock price forecast is more than 83%. Therefore, the fuzzy inference prediction system proposed in this study not only has the theoretical basis, but also can effectively predict the trend and range of stock price, which has practical value and contribution to investors.
Combinatorial Press
Title: The Construction of Fuzzy Prediction Model of Stock Price Rise and Fall Based on Machine Learning Technology
Description:
In recent years, the use of smart data analysis method to predict the stock price is financial technology; important issues in the field of finch.
However, there are many technical indicators and human subjective factors will affect the stock price forecast, so we must effectively grasp the important influence indicators to improve the accuracy of stock price forecast.
Therefore, this study uses four machine learning algorithms to predict and analyze the stock price fluctuation through the screening process of technical indicators, and then selects the important technical indicators.
In addition, due to the uncertainty and fuzziness of the attributes of technical indicators and human subjective judgment, this study uses the fuzzy inference method to construct the fuzzy inference system to predict the rise and fall of stock price, and proposes the prediction method of the range of the rise and fall of stock price.
Finally, this paper makes an empirical analysis on the stock price data of three companies.
The results show that the accuracy of stock price forecast is more than 82.
13%, and the average accuracy of stock price forecast is more than 83%.
Therefore, the fuzzy inference prediction system proposed in this study not only has the theoretical basis, but also can effectively predict the trend and range of stock price, which has practical value and contribution to investors.
Related Results
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Abstract. Fuzzy Inference System requires several stages to get the output, 1) formation of fuzzy sets, 2) formation of rules, 3) application of implication functions, 4) compositi...
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Here in this paper, we provide characterizations of fuzzy quasi-ideal in terms of level and strong level subsets. Along with it, we provide expression for the generated fuzzy quasi...
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
Background Several scholars defined the concepts of fuzzy soft set theory and their application on decision-making problem. Based on this concept, researchers defined the generalis...
[RETRACTED] Keto Extreme Fat Burner Price at Clicks (price at clicks) - Reviews, dischem, takealot, tim noakes & price at clicks | Read Must v1
[RETRACTED] Keto Extreme Fat Burner Price at Clicks (price at clicks) - Reviews, dischem, takealot, tim noakes & price at clicks | Read Must v1
[RETRACTED]Keto Extreme Fat Burner Price at Clicks (price at clicks) - Reviews, dischem, takealot, tim noakes & price at clicks | Read Must Keto Extreme Fat Burner Price at Cl...
[RETRACTED] Keto Extreme Fat Burner Price at Clicks (price at clicks) - Reviews, dischem, takealot, tim noakes & price at clicks | Read Must v1
[RETRACTED] Keto Extreme Fat Burner Price at Clicks (price at clicks) - Reviews, dischem, takealot, tim noakes & price at clicks | Read Must v1
[RETRACTED]Keto Extreme Fat Burner Price at Clicks (price at clicks) - Reviews, dischem, takealot, tim noakes & price at clicks | Read Must Keto Extreme Fat Burner Price at Cl...
Fuzzy Chaotic Neural Networks
Fuzzy Chaotic Neural Networks
An understanding of the human brain’s local function has improved in recent years. But the cognition of human brain’s working process as a whole is still obscure. Both fuzzy logic ...
Fuzzy Semantic Models of Fuzzy Concepts in Fuzzy Systems
Fuzzy Semantic Models of Fuzzy Concepts in Fuzzy Systems
The fuzzy properties of language semantics are a central problem towards machine-enabled natural language processing in cognitive linguistics, fuzzy systems, and computational ling...
FUZZY RINGS AND ITS PROPERTIES
FUZZY RINGS AND ITS PROPERTIES
Abstract One of algebraic structure that involves a binary operation is a group that is defined an un empty set (classical) with an associative binary operation, it has identity e...

