Javascript must be enabled to continue!
Separation Principles and Strategies for an Oil–Water Separation Membrane with Special Wettability
View through CrossRef
Although numerous reviews have discussed the research progress in “filtration-type” oil–water membrane separation with special wettability, they predominantly focus on the types of membrane separation and preparation methods, without providing an in-depth analysis of the separation principles and strategies. This paper is different from the previous reviews focusing on the types and preparation methods of membrane separation, mainly as regards membrane surface adsorption, liquid through the pores, and liquid extraction from the pores of the three key nodes in order to analyze the impact of membrane block wettability on the oil–water separation effect of the independent influence. Accordingly, we summed up the membrane separation principle and design strategy to guide modular wettability design during membrane fabrication, thereby enhancing membrane wettability. The modular wettability design approach can provide guidance during the membrane development phase, offering potential solutions to extend membrane lifespan and address issues of surface fouling and pore clogging while enhancing mass transfer efficiency during operation.
Title: Separation Principles and Strategies for an Oil–Water Separation Membrane with Special Wettability
Description:
Although numerous reviews have discussed the research progress in “filtration-type” oil–water membrane separation with special wettability, they predominantly focus on the types of membrane separation and preparation methods, without providing an in-depth analysis of the separation principles and strategies.
This paper is different from the previous reviews focusing on the types and preparation methods of membrane separation, mainly as regards membrane surface adsorption, liquid through the pores, and liquid extraction from the pores of the three key nodes in order to analyze the impact of membrane block wettability on the oil–water separation effect of the independent influence.
Accordingly, we summed up the membrane separation principle and design strategy to guide modular wettability design during membrane fabrication, thereby enhancing membrane wettability.
The modular wettability design approach can provide guidance during the membrane development phase, offering potential solutions to extend membrane lifespan and address issues of surface fouling and pore clogging while enhancing mass transfer efficiency during operation.
Related Results
Scale-dependency Wettability of Tight Sandstone: Insights from an Eocene fluvial sandstone reservoir in the Bohai Bay Basin
Scale-dependency Wettability of Tight Sandstone: Insights from an Eocene fluvial sandstone reservoir in the Bohai Bay Basin
In the development of tight oil reservoirs, wettability determines the distribution and flow behavior of oil and water during reservoir development and enhanced oil recovery. Howev...
Procedure for Western blot v1
Procedure for Western blot v1
Goal: This document has the objective of standardizing the protocol for Western blot. This technique allows the detection of specific proteins separated on polyacrylamide gel and t...
Investigation of Wettability of Organic-Rich Mudrocks via Fourier-Transform Infrared
Spectroscopy
Investigation of Wettability of Organic-Rich Mudrocks via Fourier-Transform Infrared
Spectroscopy
The complex composition of organic-rich mudrocks (ORM) presents a significant challenge in
hydrocarbon exploration and production, leading to uncertainties in wettability asses...
Dielectric Dispersion Model for Qualitative Interpretation of Wettability
Dielectric Dispersion Model for Qualitative Interpretation of Wettability
Formation dielectric dispersion is known to be affected by the formation wettability state. Typically, a hydrocarbon-wet formation has a reduced DC conductivity with a less dispers...
Carbonated Water for Acceleration of Oil Production, Reduction of Water Production and Improvement of CO2-Storage Capacity
Carbonated Water for Acceleration of Oil Production, Reduction of Water Production and Improvement of CO2-Storage Capacity
Carbon Dioxide (CO2) capture, storage and its utilization can be used to decrease Greenhouse Gas (GHG) emissions (Hong 2022). Alteration of the wettability of oil reservoirs has th...
Wettability Estimation Using Surface-Complexation Simulations
Wettability Estimation Using Surface-Complexation Simulations
Summary
Wettability controls the fluid-phase distribution and flow properties in the reservoir. The ionic compositions of brine, the oil chemistry, and the reservoir...
The Impact of Mixed Wettability on Pore-Scale Fluid Displacement Dynamics in Microfluidic Models
The Impact of Mixed Wettability on Pore-Scale Fluid Displacement Dynamics in Microfluidic Models
Abstract
This study explores the role of mixed wettability in influencing fluid displacement behaviors at the pore scale, which is a critical yet underexplored aspec...
Field-Scale Wettability Modification—The Limitations of Diffusive Surfactant Transport
Field-Scale Wettability Modification—The Limitations of Diffusive Surfactant Transport
Abstract
Densely fractured oil-wet carbonate fields pose a true challenge for oil recovery, which traditional primary and secondary processes fail to meet. The diffi...

