Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Furnace Design for Improved Exhaust Gas Circulation and Heat Transfer Efficiency

View through CrossRef
Abstract In the aluminum production industry, metal furnaces are operated by diffusion flame over the metal surface to maintain the aluminum metal at the set point temperature for alloying and casting. Heat is transferred from the flame and its exhaust gases to the metal surface via radiation and convection. The exhaust gases leaves through the furnace’s chimney carrying a significant amount of waste heat to the atmosphere. Furnace efficiency could be improved by enhancing the heat transfer inside the furnace. In this study, a validated full-scale 3-D CFD model of a natural gas fired aluminum furnace is developed to investigate the effect of flue gas ventilation configurations and burner operating conditions on the heat transfer inside the furnace. Onsite measurements are carried out for the fuel and airflow rates as well as flue gas temperature. Four flue ventilation configurations are considered with eight furnace’s operation modes. The flue-gas’s waste-heat varies from 49–58%, with the highest value occurring at the high-fire operating mode. This indicates a significant room for improvement in the furnace performance. Results suggest that a symmetrical positioning of the exhaust duct favors effective exhaust gas circulation within the furnace and hence, increases hot-gases’ heat-transfer effectiveness inside the furnace. These results provide some guidelines for optimal aluminum reverberatory furnace designs and operation.
Title: Furnace Design for Improved Exhaust Gas Circulation and Heat Transfer Efficiency
Description:
Abstract In the aluminum production industry, metal furnaces are operated by diffusion flame over the metal surface to maintain the aluminum metal at the set point temperature for alloying and casting.
Heat is transferred from the flame and its exhaust gases to the metal surface via radiation and convection.
The exhaust gases leaves through the furnace’s chimney carrying a significant amount of waste heat to the atmosphere.
Furnace efficiency could be improved by enhancing the heat transfer inside the furnace.
In this study, a validated full-scale 3-D CFD model of a natural gas fired aluminum furnace is developed to investigate the effect of flue gas ventilation configurations and burner operating conditions on the heat transfer inside the furnace.
Onsite measurements are carried out for the fuel and airflow rates as well as flue gas temperature.
Four flue ventilation configurations are considered with eight furnace’s operation modes.
The flue-gas’s waste-heat varies from 49–58%, with the highest value occurring at the high-fire operating mode.
This indicates a significant room for improvement in the furnace performance.
Results suggest that a symmetrical positioning of the exhaust duct favors effective exhaust gas circulation within the furnace and hence, increases hot-gases’ heat-transfer effectiveness inside the furnace.
These results provide some guidelines for optimal aluminum reverberatory furnace designs and operation.

Related Results

APU Exhaust Muffler Design Improvements Through Conjugate Heat Transfer CFD Analysis
APU Exhaust Muffler Design Improvements Through Conjugate Heat Transfer CFD Analysis
An Auxiliary Power Unit (APU) is an additional gas turbine engine located in the tail cone section of an aircraft which can be operated while the aircraft is on the ground or in fl...
Cooling Cyclic Air of Marine Engine with Water-Fuel Emulsion Combustion by Exhaust Heat Recovery Chiller
Cooling Cyclic Air of Marine Engine with Water-Fuel Emulsion Combustion by Exhaust Heat Recovery Chiller
The fuel efficiency of marine diesel engine as any combustion engine falls with raising the temperature of air at the suction of its turbocharger. Therefore, cooling the engine tur...
Numerical modeling of peat burning processes in a vortex furnace with countercurrent swirl flows
Numerical modeling of peat burning processes in a vortex furnace with countercurrent swirl flows
The paper presents the process of peat burning in a swirl furnace with counter-current swirl flows and the results of a numerical study. The cyclone-vortex technology of solid fuel...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
Particle and fibre toxicology
Particle and fibre toxicology
BACKGROUND: Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studie...
Design
Design
Conventional definitions of design rarely capture its reach into our everyday lives. The Design Council, for example, estimates that more than 2.5 million people use design-related...
A study to assess the energy savings potential in the ocean going trawler 'Roxana Bank'
A study to assess the energy savings potential in the ocean going trawler 'Roxana Bank'
Increasing fuel prices have forced marine engineers and diesel engine manufacturers to look at methods of. reducing fuel consumption without a loss in output power. Engineers are a...
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
This study uses CFD to consider the effects of obstructions (bosses) on the fluid flow and heat transfer in finned heat sinks used for cooling electronic components. In particular,...

Back to Top