Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Temperature Distribution in a Turbulent Flow in the Heat Pollution Phenomena

View through CrossRef
Abstract The thermal pollution, with major effects on the water quality degradation by any process involving the temperature transfer, represents nowadays a major concern for the entire scientific world. The turbulent heat and the mass transfer have an essential role in the processes of thermal pollution, mainly in problems associated with the transport of hot fluids in long heating pipes, thermal flows associated with big thermo-electric power plants, etc. In the last decades, the problems of the turbulent heat and mass transfer were analyzed for different dedicated applications. The present paper, in the first part, estimates the universal law of the velocity distribution near a solid wall, with a specific interpretation of the fluid viscosity, valid for all types of flows. Most of the scientific researches associate nowadays both the turbulent heat and the mass transfer with the Prandtl number. In the turbulent fluid flow near a solid and rigid surface, there are three flowing domains, laminar, transient, and fully turbulent, each one with its characteristics. In this paper, it is assumed that the friction effort at the wall remains valid at any distance from the wall, but with different forms associated with the dynamic viscosity. By using the superposition of the molecular and turbulent viscosity and by creating the interdependence between the molecular and turbulent transfer coefficients is estimated the mathematical model of the velocity profile for the fluid flow and temperature distribution. Three supplementary hypotheses have been assumed to estimate the dependence between the laminar and thermal sub-layer and the hydrodynamic sub-layer. The theoretical obtained distribution was compared with some experimental results from the literature and it was observed there is a good agreement between them; the differences are smaller than 3%. In the second part of the paper is determined the temperature field for a fluid flowing also in presence of the solid surfaces with different temperatures, associated not only with the Prandtl number but also with the fluid viscosity and its dependence with the temperature, correlated with the Grashoff number. In the next paragraph is used the concept of the laminar substrate with different thicknesses for the hydrodynamic flows with thermal transfer to the solid walls, and also the inverse transfer from the solid walls affecting the fluid flow and the mass transfer. The obtained mathematical model is correlated with the semi-empirical data from the literature. By numerical modeling, the obtained results were compared with the experimental measurements and it was determined the dependence between the Stanton number and the Prandtl number. The numerical results demonstrate a good agreement with the experimental results in a wide range of the Prandtl numbers from 0.5 to 3000. Finally, are mentioned some conclusions and references.
American Society of Mechanical Engineers
Title: Temperature Distribution in a Turbulent Flow in the Heat Pollution Phenomena
Description:
Abstract The thermal pollution, with major effects on the water quality degradation by any process involving the temperature transfer, represents nowadays a major concern for the entire scientific world.
The turbulent heat and the mass transfer have an essential role in the processes of thermal pollution, mainly in problems associated with the transport of hot fluids in long heating pipes, thermal flows associated with big thermo-electric power plants, etc.
In the last decades, the problems of the turbulent heat and mass transfer were analyzed for different dedicated applications.
The present paper, in the first part, estimates the universal law of the velocity distribution near a solid wall, with a specific interpretation of the fluid viscosity, valid for all types of flows.
Most of the scientific researches associate nowadays both the turbulent heat and the mass transfer with the Prandtl number.
In the turbulent fluid flow near a solid and rigid surface, there are three flowing domains, laminar, transient, and fully turbulent, each one with its characteristics.
In this paper, it is assumed that the friction effort at the wall remains valid at any distance from the wall, but with different forms associated with the dynamic viscosity.
By using the superposition of the molecular and turbulent viscosity and by creating the interdependence between the molecular and turbulent transfer coefficients is estimated the mathematical model of the velocity profile for the fluid flow and temperature distribution.
Three supplementary hypotheses have been assumed to estimate the dependence between the laminar and thermal sub-layer and the hydrodynamic sub-layer.
The theoretical obtained distribution was compared with some experimental results from the literature and it was observed there is a good agreement between them; the differences are smaller than 3%.
In the second part of the paper is determined the temperature field for a fluid flowing also in presence of the solid surfaces with different temperatures, associated not only with the Prandtl number but also with the fluid viscosity and its dependence with the temperature, correlated with the Grashoff number.
In the next paragraph is used the concept of the laminar substrate with different thicknesses for the hydrodynamic flows with thermal transfer to the solid walls, and also the inverse transfer from the solid walls affecting the fluid flow and the mass transfer.
The obtained mathematical model is correlated with the semi-empirical data from the literature.
By numerical modeling, the obtained results were compared with the experimental measurements and it was determined the dependence between the Stanton number and the Prandtl number.
The numerical results demonstrate a good agreement with the experimental results in a wide range of the Prandtl numbers from 0.
5 to 3000.
Finally, are mentioned some conclusions and references.

Related Results

Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
This study uses CFD to consider the effects of obstructions (bosses) on the fluid flow and heat transfer in finned heat sinks used for cooling electronic components. In particular,...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
Thermal energy storage with tunnels in different subsurface conditions
Thermal energy storage with tunnels in different subsurface conditions
The widespread use of the underground and global climate change impact the urban subsurface temperature. Changes in the subsurface environment can affect the performance of undergr...
Magnesium Heat Sink Evaluations
Magnesium Heat Sink Evaluations
<div class="htmlview paragraph">A system has been constructed to estimate heat dissipated from geometrically identical heat sinks and pinfins extruded from magnesium (M1A) an...
Experimental Determination of Heat Flow Parameters during Induction of General Anesthesia
Experimental Determination of Heat Flow Parameters during Induction of General Anesthesia
Background Alterations in body temperature result from changes in tissue heat content. Heat flow is a complex function of vasomotor status and core, peripheral, and amb...
Large Eddy Simulations on Fan Shaped Film Cooling Hole With Various Inlet Turbulence Generation Methods
Large Eddy Simulations on Fan Shaped Film Cooling Hole With Various Inlet Turbulence Generation Methods
Abstract Large eddy simulations on well-known 7-7-7 fan shaped cooling hole have been carried out. Film cooling methods are generally applied to high pressure turbin...
Numerical Investigation of Heat Transfer Characteristics of a Novel Wavy-Tapered Microchannel Heat Sink
Numerical Investigation of Heat Transfer Characteristics of a Novel Wavy-Tapered Microchannel Heat Sink
In the present study, a multi-variable comparative study of the effect of microchannel heat sink configurations on their thermal performance is conducted by numerically simulating ...
Large-eddy simulations of the mountain boundary layer : daytime exchange processes and nocturnal fog formation
Large-eddy simulations of the mountain boundary layer : daytime exchange processes and nocturnal fog formation
In this dissertation, different aspects of turbulent transport and thermally driven flows over complex terrain are investigated. Two publications concentrate on the vertical heat a...

Back to Top