Javascript must be enabled to continue!
Bio-Inspired C/N/TiO2 Hybrid Composite Heterostructure: Enhanced Photocatalytic Activity under Visible Light
View through CrossRef
The hydrothermal treatment was used to create a natural hierarchical bio-inspired carbon and nitrogen-doped C/N/TiO2 hybrid composite. It is the goal of this work to investigate the photocatalytic activity of bio-inspired C/N/TiO2 hybrid composite. Techniques such as X-ray powder diffraction, scanning electron microscopy, UV-Vis absorption spectroscopy, FTIR, Raman, and photoluminescence spectroscopy were used to explore the structural, morphological, and photocatalysis characteristics of the bio-inspired C/N/TiO2 hybrid composite. By doping carbon and nitrogen, TiO2 nanotubes were able to improve the photocatalyst properties of the C/N/TiO2 hybrid composite, decrease the energy band gap (∼2.55 eV), and result in increased electron transfer efficiency when compared to pure TiO2. The photocatalytic degradation of pollutants (rhodamine B (RhB)) is made possible by the use of a bio-inspired C/N/TiO2 hybrid composite that has high interconnectivity and an easily accessible surface.
Title: Bio-Inspired C/N/TiO2 Hybrid Composite Heterostructure: Enhanced Photocatalytic Activity under Visible Light
Description:
The hydrothermal treatment was used to create a natural hierarchical bio-inspired carbon and nitrogen-doped C/N/TiO2 hybrid composite.
It is the goal of this work to investigate the photocatalytic activity of bio-inspired C/N/TiO2 hybrid composite.
Techniques such as X-ray powder diffraction, scanning electron microscopy, UV-Vis absorption spectroscopy, FTIR, Raman, and photoluminescence spectroscopy were used to explore the structural, morphological, and photocatalysis characteristics of the bio-inspired C/N/TiO2 hybrid composite.
By doping carbon and nitrogen, TiO2 nanotubes were able to improve the photocatalyst properties of the C/N/TiO2 hybrid composite, decrease the energy band gap (∼2.
55 eV), and result in increased electron transfer efficiency when compared to pure TiO2.
The photocatalytic degradation of pollutants (rhodamine B (RhB)) is made possible by the use of a bio-inspired C/N/TiO2 hybrid composite that has high interconnectivity and an easily accessible surface.
Related Results
The Hydrothermal Synthesis of TiO2-GO with Enhance Photocatalytic Activity
The Hydrothermal Synthesis of TiO2-GO with Enhance Photocatalytic Activity
A composite material consisting of titanium dioxide and graphene oxide (TiO2–GO) was synthesized through a hydrothermal reaction. This reaction involved the use of Ti(SO4)2 in an e...
Photocatalytic Degradation of Gaseous Benzene Using Cu/Fe-Doped TiO2 Nanocatalysts under Visible Light
Photocatalytic Degradation of Gaseous Benzene Using Cu/Fe-Doped TiO2 Nanocatalysts under Visible Light
Visible-light-enhanced TiO2 nanocatalysts doped with Cu and Fe were synthesized using the sol–gel method to investigate their performance in degrading gaseous benzene. The structur...
Enhanced Photocatalytic Activity of Metal‐Metal‐Nonmetal Multidoped TiO2 Nanoparticles towards Visible Light
Enhanced Photocatalytic Activity of Metal‐Metal‐Nonmetal Multidoped TiO2 Nanoparticles towards Visible Light
AbstractTiO2 is the most important and remarkable material in photocatalytic applications. In the present work, pure and doped TiO2 nanoparticles were fabricated by the sol‐gel syn...
Adsorption and Photocatalytic Mineralization of Bromophenol Blue Dye with TiO2 Modified with Clinoptilolite/Activated Carbon
Adsorption and Photocatalytic Mineralization of Bromophenol Blue Dye with TiO2 Modified with Clinoptilolite/Activated Carbon
This study presents a hybridized photocatalyst with adsorbate as a promising nanocomposite for photoremediation of wastewater. Photocatalytic degradation of bromophenol blue (BPB) ...
Enhanced photocatalytic performance for methylene blue degradation of TiO2 by transition metal oxides hybrid MxOy (M = Fe, V, W)
Enhanced photocatalytic performance for methylene blue degradation of TiO2 by transition metal oxides hybrid MxOy (M = Fe, V, W)
Water contamination along with the environmental issues resulted by industrial wastewaters have caused a trend in applying semiconducting photocatalysts, among which TiO2 composite...
Performance comparison of dye-sensitized solar cells by using different metal oxide- coated TiO2 as the photoanode
Performance comparison of dye-sensitized solar cells by using different metal oxide- coated TiO2 as the photoanode
In order to increase the conversion efficiency of dye-sensitized solar cells, TiO2 photoanode surface is often covered with a metal oxide layer to form a core-shell composite struc...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract
The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Preparation and Photocatalytic Activity Evaluation of Composite Photocatalyst Fe-TiO2/TiO2
Preparation and Photocatalytic Activity Evaluation of Composite Photocatalyst Fe-TiO2/TiO2
Fe-TiO2 photocatalyst was prepared by Sol-gel method using tetrabutyl titanate [Ti(OC4H9)4] as the titanium precursor. The relative p-n junction composite Fe-TiO2/TiO2 samples were...

