Javascript must be enabled to continue!
Consensus ensemble neural network multitarget model of RAGE inhibitory activity of chemical compounds
View through CrossRef
RAGE signal transduction via the RAGE-NF-κB signaling pathway is one of the mechanisms of inflammatory reactions that cause severe complications in diabetes mellitus. RAGE inhibitors are promising pharmacological compounds that require the development of new predictive models. Based on the methodology of artificial neural networks, consensus ensemble neural network multitarget model has been constructed. This model describes the dependence of the level of the RAGE inhibitory activity on the affinity of compounds for 34 target proteins of the RAGE-NF-κB signal pathway. For this purpose an expanded database of valid three-dimensional models of target proteins of the RAGE-NF-κB signal chain was created on the basis of a previously created database of three-dimensional models of relevant biotargets. Ensemble molecular docking of known RAGE inhibitors from a verified database into the sites of added models of target proteins was performed, and the minimum docking energies for each compound in relation to each target were determined. An extended training set for neural network modeling was formed. Using seven variants of sampling by the method of artificial multilayer perceptron neural networks, three ensembles of classification decision rules were constructed to predict three level of the RAGE-inhibitory activity based on the calculated affinity of compounds for significant target proteins of the RAGE-NF-κB signaling pathway. Using a simple consensus of the second level, the predictive ability of the created model was assessed and its high accuracy and statistical significance were shown. The resultant consensus ensemble neural network multitarget model has been used for virtual screening of new derivatives of different chemical classes. The most promising substances have been synthesized and sent for experimental studies.
Institute of Biochemistry
Title: Consensus ensemble neural network multitarget model of RAGE inhibitory activity of chemical compounds
Description:
RAGE signal transduction via the RAGE-NF-κB signaling pathway is one of the mechanisms of inflammatory reactions that cause severe complications in diabetes mellitus.
RAGE inhibitors are promising pharmacological compounds that require the development of new predictive models.
Based on the methodology of artificial neural networks, consensus ensemble neural network multitarget model has been constructed.
This model describes the dependence of the level of the RAGE inhibitory activity on the affinity of compounds for 34 target proteins of the RAGE-NF-κB signal pathway.
For this purpose an expanded database of valid three-dimensional models of target proteins of the RAGE-NF-κB signal chain was created on the basis of a previously created database of three-dimensional models of relevant biotargets.
Ensemble molecular docking of known RAGE inhibitors from a verified database into the sites of added models of target proteins was performed, and the minimum docking energies for each compound in relation to each target were determined.
An extended training set for neural network modeling was formed.
Using seven variants of sampling by the method of artificial multilayer perceptron neural networks, three ensembles of classification decision rules were constructed to predict three level of the RAGE-inhibitory activity based on the calculated affinity of compounds for significant target proteins of the RAGE-NF-κB signaling pathway.
Using a simple consensus of the second level, the predictive ability of the created model was assessed and its high accuracy and statistical significance were shown.
The resultant consensus ensemble neural network multitarget model has been used for virtual screening of new derivatives of different chemical classes.
The most promising substances have been synthesized and sent for experimental studies.
Related Results
Endothelial RAGE exacerbates acute postischaemic cardiac inflammation
Endothelial RAGE exacerbates acute postischaemic cardiac inflammation
SummaryAdvanced glycation end-products (AGEs) interact with their receptor RAGE, leading to an inflammatory state. We investigated the role of RAGE in postischaemic leukocyte adhes...
Abstract 2398: S100P/RAGE signaling activates AP1 and NF-kB in miR-21/RECK regulation
Abstract 2398: S100P/RAGE signaling activates AP1 and NF-kB in miR-21/RECK regulation
Abstract
The receptor for advanced glycation end-products (RAGE) plays a role in different pathological diseases including cancer. Several ligands activate RAGE, amo...
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Evaluating the Science to Inform the Physical Activity Guidelines for Americans Midcourse Report
Abstract
The Physical Activity Guidelines for Americans (Guidelines) advises older adults to be as active as possible. Yet, despite the well documented benefits of physical a...
Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice
Receptor for Advanced Glycation End Products Regulates Adipocyte Hypertrophy and Insulin Sensitivity in Mice
Receptor for advanced glycation end products (RAGE) has been shown to be involved in adiposity as well as atherosclerosis even in nondiabetic conditions. In this study, we examined...
RAGE deficiency ameliorates autoimmune hepatitis involving inhibition of IL-6 production via suppressing protein Arid5a in mice
RAGE deficiency ameliorates autoimmune hepatitis involving inhibition of IL-6 production via suppressing protein Arid5a in mice
Abstract
Activation of T cells and pro-inflammatory cytokines are essential for human autoimmune hepatitis. The receptor for advanced glycation end-product(RAGE) is one of ...
Simvastatin suppressed HMGB1-RAGE axis and atherosclerosis via mevalonate pathway
Simvastatin suppressed HMGB1-RAGE axis and atherosclerosis via mevalonate pathway
Objective
Recent studies suggested that high mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) contribute to atherosclerosis, a...
Alagebrium Reduces Glomerular Fibrogenesis and Inflammation Beyond Preventing RAGE Activation in Diabetic Apolipoprotein E Knockout Mice
Alagebrium Reduces Glomerular Fibrogenesis and Inflammation Beyond Preventing RAGE Activation in Diabetic Apolipoprotein E Knockout Mice
Advanced glycation end products (AGEs) are important mediators of diabetic nephropathy that act through the receptor for AGEs (RAGE), as well as other mechanisms, to promote renal ...
Synthesis, Docking and Antimicrobials Evaluation of Novel Pyrazolotriazines as RNA Polymerase Inhibitors
Synthesis, Docking and Antimicrobials Evaluation of Novel Pyrazolotriazines as RNA Polymerase Inhibitors
Aims:
Producing novel pyrazolotriazines such as pyrazolo[1,5-a][1,3,5]triazine and
pyrazolo[5,1-c][1,2,4]triazine derivatives and evaluate their biological activity as antimicrobia...


