Javascript must be enabled to continue!
Residual Bound Ca2+ Can Account for the Effects of Ca2+ Buffers on Synaptic Facilitation
View through CrossRef
Facilitation is a transient stimulation-induced increase in synaptic response, a ubiquitous form of short-term synaptic plasticity that can regulate synaptic transmission on fast time scales. In their pioneering work, Katz and Miledi and Rahamimoff demonstrated the dependence of facilitation on presynaptic Ca2+ influx and proposed that facilitation results from the accumulation of residual Ca2+ bound to vesicle release triggers. However, this bound Ca2+ hypothesis appears to contradict the evidence that facilitation is reduced by exogenous Ca2+ buffers. This conclusion led to a widely held view that facilitation must depend solely on the accumulation of Ca2+ in free form. Here we consider a more realistic implementation of the bound Ca2+ mechanism, taking into account spatial diffusion of Ca2+, and show that a model with slow Ca2+ unbinding steps can retain sensitivity to free residual Ca2+. We demonstrate that this model agrees with the facilitation accumulation time course and its biphasic decay exhibited by the crayfish inhibitor neuromuscular junction (NMJ) and relies on fewer assumptions than the most recent variants of the free residual Ca2+ hypothesis. Further, we show that the bound Ca2+ accumulation is consistent with Kamiya and Zucker's experimental results, which revealed that photolytic liberation of a fast Ca2+ buffer decreases the synaptic response within milliseconds. We conclude that Ca2+ binding processes with slow unbinding times (tens to hundreds of milliseconds) constitute a viable mechanism of synaptic facilitation at some synapses and discuss the experimental evidence for such a mechanism.
American Physiological Society
Title: Residual Bound Ca2+ Can Account for the Effects of Ca2+ Buffers on Synaptic Facilitation
Description:
Facilitation is a transient stimulation-induced increase in synaptic response, a ubiquitous form of short-term synaptic plasticity that can regulate synaptic transmission on fast time scales.
In their pioneering work, Katz and Miledi and Rahamimoff demonstrated the dependence of facilitation on presynaptic Ca2+ influx and proposed that facilitation results from the accumulation of residual Ca2+ bound to vesicle release triggers.
However, this bound Ca2+ hypothesis appears to contradict the evidence that facilitation is reduced by exogenous Ca2+ buffers.
This conclusion led to a widely held view that facilitation must depend solely on the accumulation of Ca2+ in free form.
Here we consider a more realistic implementation of the bound Ca2+ mechanism, taking into account spatial diffusion of Ca2+, and show that a model with slow Ca2+ unbinding steps can retain sensitivity to free residual Ca2+.
We demonstrate that this model agrees with the facilitation accumulation time course and its biphasic decay exhibited by the crayfish inhibitor neuromuscular junction (NMJ) and relies on fewer assumptions than the most recent variants of the free residual Ca2+ hypothesis.
Further, we show that the bound Ca2+ accumulation is consistent with Kamiya and Zucker's experimental results, which revealed that photolytic liberation of a fast Ca2+ buffer decreases the synaptic response within milliseconds.
We conclude that Ca2+ binding processes with slow unbinding times (tens to hundreds of milliseconds) constitute a viable mechanism of synaptic facilitation at some synapses and discuss the experimental evidence for such a mechanism.
Related Results
Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake
Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake
Key points
Cytosolic, but not matrix, Mg2+ inhibits mitochondrial Ca2+ uptake through the Ca2+ uniporter (CU).
The majority of mitochondrial Ca2+ uptake under physiological levels ...
Ca2+ entry through Na(+)‐Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na(+)‐loaded guinea‐pig coronary myocytes.
Ca2+ entry through Na(+)‐Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na(+)‐loaded guinea‐pig coronary myocytes.
1. The ionized cytosolic calcium concentration ([Ca2+]i) was monitored in voltage‐clamped coronary myocytes at 36 degrees C and 2.5 mM [Ca2+]o using the Ca2+ indicator indo‐1. [Ca2...
Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx
Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx
ABSTRACT
Influx of extracellular Ca2+ plays a major role in the activation of contraction in fish cardiac cells. The relative contributions of Na+/Ca2+ exchange and ...
Synaptic Integration
Synaptic Integration
Abstract
Neurons in the brain receive thousands of synaptic inputs from other neurons. Synaptic integration is the term used to describe how neu...
The emergence of subcellular pacemaker sites for calcium waves and oscillations
The emergence of subcellular pacemaker sites for calcium waves and oscillations
Key points
Calcium (Ca2+) is fundamental to biological cell function, and Ca2+ waves generating oscillatory Ca2+ signals are widely observed in many cell types.
Some experimental s...
Regulation of cochlear hair cell function by intracellular calcium stores
Regulation of cochlear hair cell function by intracellular calcium stores
IntroductionMammalian hearing depends on the dual mechanosensory and motor functions of cochlear hair cells. Both these functions may be regulated by Ca2+ release from intracellula...
Mechanism of Ca2+Transport by Sarcoplasmic Reticulum
Mechanism of Ca2+Transport by Sarcoplasmic Reticulum
AbstractThe sections in this article are:Structure of Sarcoplasmic Reticulum and Transverse TubulesStructure of Plasmalemma and T TubulesSarcoplasmic ReticulumJunction Between T Tu...
Calcium homeostasis in identified rat gonadotrophs.
Calcium homeostasis in identified rat gonadotrophs.
1. Whole‐cell voltage clamp was used in conjunction with the fluorescent Ca2+ indicator indo‐1 to measure extracellular Ca2+ entry and intracellular Ca2+ concentrations ([Ca2+]i) i...

