Javascript must be enabled to continue!
A Novel Upscaling Method for Evaluating Mechanical Properties of the Shale Oil Reservoir Based on Cluster Analysis and Nanoindentation
View through CrossRef
Abstract
Shale formations as major unconventional energy resources are crucial in satisfying the global energy needs of the future. Via nanoindentation method and upscale method, the macromechanical parameters of shale, such as hardness, elastic modulus, are obtained. The conventional Mori–Tanaka upscale method only divides the data into three mineral classes and fails to fully incorporate micromechanical properties to reflect the macroscale properties of samples. The research measures micromechanical parameters of shale via nanoindentation and performs cluster analysis of nanoindentation measurements. The results of cluster analysis are then combined with the Mori–Tanaka upscale model to evaluate the macroscale mechanical property of shale. The elastic modulus, hardness, and fracture toughness are divided into five groups (clusters) via cluster analysis, with each representing a certain mineral composition. This research is of great significance for more reasonably and accurately characterizing shale mechanical properties, optimizing the recovery scheme, and improving the recovery efficiency of shale gas.
Title: A Novel Upscaling Method for Evaluating Mechanical Properties of the Shale Oil Reservoir Based on Cluster Analysis and Nanoindentation
Description:
Abstract
Shale formations as major unconventional energy resources are crucial in satisfying the global energy needs of the future.
Via nanoindentation method and upscale method, the macromechanical parameters of shale, such as hardness, elastic modulus, are obtained.
The conventional Mori–Tanaka upscale method only divides the data into three mineral classes and fails to fully incorporate micromechanical properties to reflect the macroscale properties of samples.
The research measures micromechanical parameters of shale via nanoindentation and performs cluster analysis of nanoindentation measurements.
The results of cluster analysis are then combined with the Mori–Tanaka upscale model to evaluate the macroscale mechanical property of shale.
The elastic modulus, hardness, and fracture toughness are divided into five groups (clusters) via cluster analysis, with each representing a certain mineral composition.
This research is of great significance for more reasonably and accurately characterizing shale mechanical properties, optimizing the recovery scheme, and improving the recovery efficiency of shale gas.
Related Results
EffectiveFracturing Technology of Normal Pressure Shale Gas Wells
EffectiveFracturing Technology of Normal Pressure Shale Gas Wells
ABSTRACT
There is abundant normal pressure shale gas resource in China. However, it is hard to acquire commercial breakthroughs because of the relative low initia...
Geological Characteristics of Shale Reservoir of Pingdiquan Formation in Huoshaoshan Area, Junggar Basin
Geological Characteristics of Shale Reservoir of Pingdiquan Formation in Huoshaoshan Area, Junggar Basin
Unconventional oil and gas, represented by shale gas and shale oil, have occupied an important position in global energy. The rapid growth of shale gas and shale oil production sho...
Synthèse géologique et hydrogéologique du Shale d'Utica et des unités sus-jacentes (Lorraine, Queenston et dépôts meubles), Basses-Terres du Saint-Laurent, Québec
Synthèse géologique et hydrogéologique du Shale d'Utica et des unités sus-jacentes (Lorraine, Queenston et dépôts meubles), Basses-Terres du Saint-Laurent, Québec
Le présent travail a été initié dans le cadre d'un mandat donné à l'INRS-ETE par la Commission géologique du Canada (CGC) et le Ministère du Développement durable, de l'Environneme...
Multi-Interbedded Continental Shale Reservoir Evaluation and Fracturing Practice
Multi-Interbedded Continental Shale Reservoir Evaluation and Fracturing Practice
ABSTRACT:
Continental shale oil resources are abundant in Sichuan Basin in China, according to multiple limestone interbeds and variable longitudinal stress chara...
Micromechanical characterization of small volumes by means of nanoindentation
Micromechanical characterization of small volumes by means of nanoindentation
Mechanical characterization of micro-volume systems, as thin films or micro-sized phases embedded in multiphase materials, has attracted special interest in the last decades since...
STUDY OF MICROSCALE PORE STRUCTURE AND FRACTURING ON THE EXAMPLE OF CHINA SHALE FIELD
STUDY OF MICROSCALE PORE STRUCTURE AND FRACTURING ON THE EXAMPLE OF CHINA SHALE FIELD
Accurate characterization of pores and fractures in shale reservoirs is the theoretical basis for effective exploration and development of shale oil and gas. Currently, the scienti...
The Methods Taken in SZ36-1 Oilfield in the Early Stage of Production
The Methods Taken in SZ36-1 Oilfield in the Early Stage of Production
Abstract
SZ 36-1 Oil Field is located in Liaodong Bay of Bohai Sea and is an unconsolidated sand and structure-lithology reservoir. The reservoir is distributed i...
Future of Oil Shale Developement in Egypt
Future of Oil Shale Developement in Egypt
Abstract
Today, the biggest challenge faces energy sector is to meet rising demand for energy, and depletion of crude oil resources. So, great efforts should be devo...


