Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Noncoding RNA-targeted treatment for schizophrenia: CRISPR/CAS9

View through CrossRef
Schizophrenia is a genetically related mental disorder in which most genetic changes occur in non-coding regions of the human genome. In the past decade, an increasing number of non-coding regulatory RNAs (ncRNAs), including microRNA (miRNA) and long non-coding RNAs (lncRNAs), have been strongly associated with schizophrenia. However, understanding the workings of ncRNA and genetic mutations in the pathophysiology of schizophrenia has failed due to insufficient technology and lack of appropriate animal models to effectively manipulate ncRNA genes. Recently, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed to enable researchers to overcome these challenges. This review article mainly focuses on the use of CRISPR/Cas9 editing of these regions to demonstrate the causal relationship between mutations in non-coding regions of genomic DNA that express schizophrenia-related ncRNAs and the pathophysiology of schizophrenia. Furthermore, although CRISPR/Cas9 technology is still in its infancy and immature for use in the treatment of diseases, its potential to transform this advanced technology into a clinical treatment for schizophrenia will be discussed. This review describes the application of powerful and viable CRISPR/Cas9 technology to manipulate ncRNA genes associated with schizophrenia.
Title: Noncoding RNA-targeted treatment for schizophrenia: CRISPR/CAS9
Description:
Schizophrenia is a genetically related mental disorder in which most genetic changes occur in non-coding regions of the human genome.
In the past decade, an increasing number of non-coding regulatory RNAs (ncRNAs), including microRNA (miRNA) and long non-coding RNAs (lncRNAs), have been strongly associated with schizophrenia.
However, understanding the workings of ncRNA and genetic mutations in the pathophysiology of schizophrenia has failed due to insufficient technology and lack of appropriate animal models to effectively manipulate ncRNA genes.
Recently, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed to enable researchers to overcome these challenges.
This review article mainly focuses on the use of CRISPR/Cas9 editing of these regions to demonstrate the causal relationship between mutations in non-coding regions of genomic DNA that express schizophrenia-related ncRNAs and the pathophysiology of schizophrenia.
Furthermore, although CRISPR/Cas9 technology is still in its infancy and immature for use in the treatment of diseases, its potential to transform this advanced technology into a clinical treatment for schizophrenia will be discussed.
This review describes the application of powerful and viable CRISPR/Cas9 technology to manipulate ncRNA genes associated with schizophrenia.

Related Results

THE FUTURE OF MEDICINE: ADVANCING GENE THERAPY WITH CRISPR-CAS9’S EXACT PRECISION IN PEDIATRIC MALES
THE FUTURE OF MEDICINE: ADVANCING GENE THERAPY WITH CRISPR-CAS9’S EXACT PRECISION IN PEDIATRIC MALES
The revolutionary potential of CRISPR-Cas9 in medicine lies in its unparalleled precision in gene editing, heralding a new era for treating genetic disorders. This study focuses on...
Application and Prospect of CRISPR-Cas9 Gene Editing Technology in Agricultural Breeding
Application and Prospect of CRISPR-Cas9 Gene Editing Technology in Agricultural Breeding
Since its inception in 2012, the gene editing technology CRISPR-Cas9 has rapidly become a revolutionary tool in the field of gene editing due to its high efficiency, specificity, a...
Alzheimer’s disease: A CRISPR/CAS9-mediated therapeutic approach
Alzheimer’s disease: A CRISPR/CAS9-mediated therapeutic approach
The degenerative nature of Alzheimer's disease (AD) and its severe effects on cognitive function present a major challenge to worldwide healthcare systems. CRISPR/Cas9, one of the ...
Fundamentals of CRISPR-Cas9: Gene-editing technology and basic
Fundamentals of CRISPR-Cas9: Gene-editing technology and basic
The CRISPR/Cas9 system provides a robust and multiplexable genome editing tool, enabling researchers to precisely manipulate specific genomic elements and facilitating the elucidat...
T176. INSIGHTS INTO THE ROLE OF ORAL AND GUT MICROBIOME IN THE PATHOGENESIS OF SCHIZOPHRENIA
T176. INSIGHTS INTO THE ROLE OF ORAL AND GUT MICROBIOME IN THE PATHOGENESIS OF SCHIZOPHRENIA
Abstract Background The role of oral and gut microbiomes in the pathogenesis of schizophrenia has recently come to light with th...
CRISPR therapy: A revolutionary breakthrough in genetic medicine
CRISPR therapy: A revolutionary breakthrough in genetic medicine
Gene editing with CRISPR-Cas9 technology revolutionizes modern medicine by enabling precise DNA modifications. Initially discovered as a bacterial defense mechanism, the Cas9 enzym...

Back to Top