Javascript must be enabled to continue!
Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/ref-1) and DNA damage in the caudal region of acute and chronic spinal cord injured rats treated by embryonic neural stem cells
View through Europeana Collections
The oxidative mechanisms of injury-induced damage of neurons within the spinal cord are not very well understood. We used a model of T8-T9 spinal cord injury (SCI) in the rat to induce neuronal degeneration. In this spinal cord injury model, unilateral avulsion of the spinal cord causes oxidative stress of neurons. We tested the hypothesis that apurinic/apyrimidinic endonuclease (or redox effector factor-1, APE/Ref-1) regulates this neuronal oxidation mechanism in the spinal cord region caudal to the lesion, and that DNA damage is an early upstream signal. The embryonic neural stem cell therapy significantly decreased DNA- damage levels in both study groups - acutely (followed up to 7 days after SCI), and chronically (followed up to 28 days after SCI) injured animals. Meanwhile, mRNA levels of APE/Ref-1 significantly increased after embryonic neural stem cell therapy in acutely and chronically injured an imals when compared to acute and chronic sham groups. Our da ta has demonstrated that an increase of APE/Ref-1 mRNA levels in the caudal region of spinal cord strongly correlated with DNA damage after traumatic spinal cord injury. We suggest that DNA damage can be observed both in lesional and caudal regions of the acutely and chronically injured groups, but DNA damage is reduced with embryonic neural stem cell therapy.
Title: Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/ref-1) and DNA damage in the caudal region of acute and chronic spinal cord injured rats treated by embryonic neural stem cells
Description:
The oxidative mechanisms of injury-induced damage of neurons within the spinal cord are not very well understood.
We used a model of T8-T9 spinal cord injury (SCI) in the rat to induce neuronal degeneration.
In this spinal cord injury model, unilateral avulsion of the spinal cord causes oxidative stress of neurons.
We tested the hypothesis that apurinic/apyrimidinic endonuclease (or redox effector factor-1, APE/Ref-1) regulates this neuronal oxidation mechanism in the spinal cord region caudal to the lesion, and that DNA damage is an early upstream signal.
The embryonic neural stem cell therapy significantly decreased DNA- damage levels in both study groups - acutely (followed up to 7 days after SCI), and chronically (followed up to 28 days after SCI) injured animals.
Meanwhile, mRNA levels of APE/Ref-1 significantly increased after embryonic neural stem cell therapy in acutely and chronically injured an imals when compared to acute and chronic sham groups.
Our da ta has demonstrated that an increase of APE/Ref-1 mRNA levels in the caudal region of spinal cord strongly correlated with DNA damage after traumatic spinal cord injury.
We suggest that DNA damage can be observed both in lesional and caudal regions of the acutely and chronically injured groups, but DNA damage is reduced with embryonic neural stem cell therapy.
Related Results
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
Reduction of Apurinic/Apyrimidinic Endonuclease Expression After Transient Global Cerebral Ischemia in Rats
Reduction of Apurinic/Apyrimidinic Endonuclease Expression After Transient Global Cerebral Ischemia in Rats
Background and Purpose
—To clarify the relationship between apurinic/apyrimidinic endonuclease (APE/Ref-1), a multifunctional protein in the DNA base excision repair pa...
Early decompression promotes motor recovery after cervical spinal cord injury in rats with chronic cervical spinal cord compression
Early decompression promotes motor recovery after cervical spinal cord injury in rats with chronic cervical spinal cord compression
AbstractThe number of elderly patients with spinal cord injury without radiographic abnormalities (SCIWORA) has been increasing in recent years and common of most cervical spinal c...
Early decompression promotes motor recovery after cervical spinal cord injury in rats with chronic cervical spinal cord compression
Early decompression promotes motor recovery after cervical spinal cord injury in rats with chronic cervical spinal cord compression
Abstract
BackgroundThe number of elderly patients with spinal cord injury without radiographic abnormalities (SCIWORA) has been increasing in recent years and is true of mo...
Early Decrease of Apurinic/Apyrimidinic Endonuclease Expression after Transient Focal Cerebral Ischemia in Mice
Early Decrease of Apurinic/Apyrimidinic Endonuclease Expression after Transient Focal Cerebral Ischemia in Mice
The authors examined the protein expression of apurinic/apyrimidinic endonuclease (APE/Ref-1), a multifunctional protein in the DNA base excision repair pathway, before and after t...
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Abstract
Background: Age-associated epigenetic alteration is the underlying cause of DNA damage in aging cells. Two types of youth-associated DNA-protection epigenetic mark...
CB2/miR-124 signaling down-regulate the expression of purinergic P2X4 and P2X7 receptor in dorsal spinal cord of CCI rats
CB2/miR-124 signaling down-regulate the expression of purinergic P2X4 and P2X7 receptor in dorsal spinal cord of CCI rats
Abstract
Background: The importance of P2X purinoceptors, CB2 receptor and microRNA-124(miR-124) in spinal cord microglia to the development of neuropathic pain was demonst...


