Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Metamorphic and Metamorphogenic Ore Deposits

View through CrossRef
Abstract The types of mainly metallic mineralization found in metamorphic terranes are reviewed and an attempt is made to define the genetic relations between the mineralization and the metamorphic events.The terms metamorphosed, metamorphic, and metamorphogenic as applied to ores are also considered.The development of thought and the history of investigations on ores in metamorphic terranes aretraced from the early work in the second half of the nineteenth century onward. Early conceptions ofmetamorphism as an ore-forming process (metamorphogenesis) were seemingly not followed up by theiroriginators, contemporaries, or immediate successors and were neglected until comparatively recentyears. The idea of metamorphism as a modifier of preexisting, mainly sulfidic, but also oxidic, mineralizationwon more immediate and general acceptance in the early decades of the present century. InNorth America, emphasis seems to have been mainly on the deformational aspects of the metamorphism,whereas elsewhere, especially in Europe, the textural and mineralogical results of the metamorphic recrystallizationalso received considerable attention and metamorphism as an ore-forming process hadwon a certain degree of acceptance. This difference in emphasis may perhaps be referred to the differentviews held regarding the initial genesis of the ores in the two regions.The late 1940s and the 1950s witnessed a considerable revision of ideas on ore genesis, especially regardingstrata-bound massive sulfide ores. A parallel revival of interest in the role of metamorphism,probably not unrelated to the foregoing, began in the early 1950s, to begin with concerning metamorphosedores. However, new thoughts concerning metamorphogenesis related to granitization or ultrametamorphismas an ore-forming process began to be published.The following decades witnessed an almost explosive increase in the number of publications dealingwith the effects of metamorphism on ore mineralization of practically all types, but with a definite emphasison sulfide ores of the strata-bound type. One of the most significant breakthroughs in this respectconcerned the world-famous Broken Hill deposit, New South Wales, although the metamorphosed natureof ores in the Scandinavian Caledonides, the North American Appalachians, the Lachlan fold beltof eastern Australia, the Sanbagawa terrane of Japan, the Urals, and Proterozoic fold belts in southernAfrica, have all been thoroughly documented.In recent years, however, the interpretation of many massive sulfidic ores in metamorphic terranes asmetamorphosed has been increasingly questioned, and syntectonic, metamorphogenic, origins havebeen advocated. There is obviously a great need to be able to distinguish more
Society of Economic Geologists
Title: Metamorphic and Metamorphogenic Ore Deposits
Description:
Abstract The types of mainly metallic mineralization found in metamorphic terranes are reviewed and an attempt is made to define the genetic relations between the mineralization and the metamorphic events.
The terms metamorphosed, metamorphic, and metamorphogenic as applied to ores are also considered.
The development of thought and the history of investigations on ores in metamorphic terranes aretraced from the early work in the second half of the nineteenth century onward.
Early conceptions ofmetamorphism as an ore-forming process (metamorphogenesis) were seemingly not followed up by theiroriginators, contemporaries, or immediate successors and were neglected until comparatively recentyears.
The idea of metamorphism as a modifier of preexisting, mainly sulfidic, but also oxidic, mineralizationwon more immediate and general acceptance in the early decades of the present century.
InNorth America, emphasis seems to have been mainly on the deformational aspects of the metamorphism,whereas elsewhere, especially in Europe, the textural and mineralogical results of the metamorphic recrystallizationalso received considerable attention and metamorphism as an ore-forming process hadwon a certain degree of acceptance.
This difference in emphasis may perhaps be referred to the differentviews held regarding the initial genesis of the ores in the two regions.
The late 1940s and the 1950s witnessed a considerable revision of ideas on ore genesis, especially regardingstrata-bound massive sulfide ores.
A parallel revival of interest in the role of metamorphism,probably not unrelated to the foregoing, began in the early 1950s, to begin with concerning metamorphosedores.
However, new thoughts concerning metamorphogenesis related to granitization or ultrametamorphismas an ore-forming process began to be published.
The following decades witnessed an almost explosive increase in the number of publications dealingwith the effects of metamorphism on ore mineralization of practically all types, but with a definite emphasison sulfide ores of the strata-bound type.
One of the most significant breakthroughs in this respectconcerned the world-famous Broken Hill deposit, New South Wales, although the metamorphosed natureof ores in the Scandinavian Caledonides, the North American Appalachians, the Lachlan fold beltof eastern Australia, the Sanbagawa terrane of Japan, the Urals, and Proterozoic fold belts in southernAfrica, have all been thoroughly documented.
In recent years, however, the interpretation of many massive sulfidic ores in metamorphic terranes asmetamorphosed has been increasingly questioned, and syntectonic, metamorphogenic, origins havebeen advocated.
There is obviously a great need to be able to distinguish more.

Related Results

Distribution Characteristics and Metallogenic Regularity of Graphite Deposits in Qinling Orogen, China
Distribution Characteristics and Metallogenic Regularity of Graphite Deposits in Qinling Orogen, China
AbstractQinling orogen is one of the five main repository distribution provinces of large scale graphite resources. Graphite occurrence strata are multitudinous including NeoArchae...
A Preliminary Review of the Metallogenic Regularity of Nickel Deposits in China
A Preliminary Review of the Metallogenic Regularity of Nickel Deposits in China
AbstractThe nickel deposits mainly distributed in 19 provinces and autonomous regions in China are 339 ore deposits/occurrences, including 4 super large‐scale deposits, 14 large‐sc...
Main Mineralization Mechanism of Magmatic Sulphide Deposits in China
Main Mineralization Mechanism of Magmatic Sulphide Deposits in China
AbstractBefore intruding, primary magmas have undergone liquation and partial crystallization at depth; as a result the magmas are partitioned into barren magma, ore–bearing magma,...
Mathematical, Physical, and Chemical Interpretations of Structural Control and Contributions to Gold Mineralization
Mathematical, Physical, and Chemical Interpretations of Structural Control and Contributions to Gold Mineralization
Using the gold provinces in the northern margin of the North China Platform and the western Canadian orogenic belt—separated by thousands of miles—as examples, this article examine...
A Preliminary Review of Metallogenic Regularity of Molybdenum Deposits in China
A Preliminary Review of Metallogenic Regularity of Molybdenum Deposits in China
Molybdenum is one of the dominant minerals in China because of its rich reserves. In recent years, outstanding breakthroughs have been made in molybdenum prospecting in China, and ...
Exploration of lead‐zinc deposits using electromagnetic method: A case study in Fengtai ore deposits in Western China
Exploration of lead‐zinc deposits using electromagnetic method: A case study in Fengtai ore deposits in Western China
The Fengtai Pb–Zn metallogenic deposits located in China's western region have good minerogenetic conditions and exploration potential. However, the Fengtai mining area passed thro...
Copper-Nickel Sulfide Ore-Bearing Formations
Copper-Nickel Sulfide Ore-Bearing Formations
Abstract The sulfide copper-nickel deposits of the Noril’sk region (Noril’sk I, Talnakh, Octyabrskaya) were formed during the late Paleozoic to early Mesozoic episod...

Back to Top