Javascript must be enabled to continue!
The Contributions of the Endolysosomal Compartment and Autophagy to APOE ɛ4 Allele-Mediated Increase in Alzheimer’s Disease Risk
View through CrossRef
Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer’s disease (AD), which is the major cause of dementia among elderly individuals. The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD. Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear. Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies. The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production. APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux. APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes. APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aβ accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects. ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes. ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure. Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.
Title: The Contributions of the Endolysosomal Compartment and Autophagy to APOE ɛ4 Allele-Mediated Increase in Alzheimer’s Disease Risk
Description:
Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer’s disease (AD), which is the major cause of dementia among elderly individuals.
The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD.
Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear.
Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies.
The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production.
APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux.
APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes.
APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aβ accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects.
ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes.
ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure.
Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.
Related Results
APOE4 increases energy metabolism in APOE-isogenic iPSC-derived neurons
APOE4 increases energy metabolism in APOE-isogenic iPSC-derived neurons
AbstractThe apolipoprotein E4 (APOE4) allele represents the major genetic risk factor for Alzheimer’s disease (AD). In contrast, APOE2 is known to lower the AD risk while APOE3 is ...
e0175 The effect of ghrelin on the regression of atherosclerosis plaque in ApoE-/- mice aorta
e0175 The effect of ghrelin on the regression of atherosclerosis plaque in ApoE-/- mice aorta
Objective
To observe the effect of ghrelin on reducing the apoE−/− mice plasma IL-8, MCP-1, TNFα level and the NFκBp65 expression in vascular wall and the regress...
Abstract 521: Role of Autophagy in Endothelial Cells for Atherosclerosis
Abstract 521: Role of Autophagy in Endothelial Cells for Atherosclerosis
Endothelial dysfunction is thought to play an important role for the development of atherosclerosis. Autophagy is the mechanism by which organelles, aggregated protein, and even li...
Penerapan Metode Convolutional Neural Network untuk Diagnosa Penyakit Alzheimer
Penerapan Metode Convolutional Neural Network untuk Diagnosa Penyakit Alzheimer
Abstract— Alzheimer's disease is a neurodegenerative disease that develops gradually, and is associated with cardiovascular and cerebrovascular problems. Alzheimer's is a serious d...
MBI‐apathy, ApoEɛ2, and risk for Alzheimer disease dementia
MBI‐apathy, ApoEɛ2, and risk for Alzheimer disease dementia
AbstractBackgroundApathy, characterized by decreased interest, initiative, and emotional reactivity, is amongst the most common neuropsychiatric symptoms in dementia. However, apat...
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract 1674: Inhibition of GSK3 reduces p70S6K activity and promotes autophagy independently of the JNK-cJun pathway.
Abstract
Considering that a tumor promoting role for GSK3 has been suggested in pancreatic cancer (PC) cells and that GSK3 inhibitors are currently under clinical tr...
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
<div>Abstract<p>Autophagy is a mechanism by which cells degrade cellular material to provide nutrients and energy for survival during stress. The autophagy is thought t...
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
Data from Autophagy Supports Breast Cancer Stem Cell Maintenance by Regulating IL6 Secretion
<div>Abstract<p>Autophagy is a mechanism by which cells degrade cellular material to provide nutrients and energy for survival during stress. The autophagy is thought t...

