Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Fan Blade Flutter: Single Blade Instability or Blade to Blade Coupling?

View through CrossRef
Different types of fan blade flutter occur at the various compressor flow regimes. Sub/transonic stall flutter and two forms of supersonic started flow flutter have been studied in a straight cascade wind tunnel. Results show clearly that these three common forms of flutter can exist as single-degree-of-freedom (single-blade instabilities). Cascade effects, though at times important, are never the only flutter mechanism: flutter limits are essentially controlled by single-blade aeroelastic coefficients, though blade-to-blade coupling arising from cascade effects can modify these limits according to the mode order. Thus, contrary to widespread practice, the fundamental approach to flutter problems should lie at least as much in the study of single blade flutter as in that of unsteady cascade effects. The two should anyhow best be considered separately when searching for a better physical insight.
Title: Fan Blade Flutter: Single Blade Instability or Blade to Blade Coupling?
Description:
Different types of fan blade flutter occur at the various compressor flow regimes.
Sub/transonic stall flutter and two forms of supersonic started flow flutter have been studied in a straight cascade wind tunnel.
Results show clearly that these three common forms of flutter can exist as single-degree-of-freedom (single-blade instabilities).
Cascade effects, though at times important, are never the only flutter mechanism: flutter limits are essentially controlled by single-blade aeroelastic coefficients, though blade-to-blade coupling arising from cascade effects can modify these limits according to the mode order.
Thus, contrary to widespread practice, the fundamental approach to flutter problems should lie at least as much in the study of single blade flutter as in that of unsteady cascade effects.
The two should anyhow best be considered separately when searching for a better physical insight.

Related Results

Closed-loop identification for aircraft flutter model parameters
Closed-loop identification for aircraft flutter model parameters
Purpose The purpose of this paper is to extend the authors’ previous contributions on aircraft flutter model parameters identification. Because closed-loop condition is more widely...
Study on Coupled Mode Flutter Parameters of Large Wind Turbine Blades
Study on Coupled Mode Flutter Parameters of Large Wind Turbine Blades
Abstract As the output power of wind turbines continues to increase, the blade size and flexibility increase. In actual operation, unpredictable airflow caused by natural c...
Study on coupled mode flutter parameters of large wind turbine blades
Study on coupled mode flutter parameters of large wind turbine blades
AbstractAs the size of wind turbine blades increases, the flexibility of the blades increases. In actual operation, airflow flow can cause aerodynamic elastic instability of the bl...
Improving the Flutter Margin of an Unstable Fan Blade
Improving the Flutter Margin of an Unstable Fan Blade
The aim of this paper is to introduce design modifications which can be made to improve the flutter stability of a fan blade. A rig fan blade, which suffered from flutter in the pa...
Effects of Azimilide Dihydrochloride on Circus Movement Atrial Flutter in the Canine Sterile Pericarditis Model
Effects of Azimilide Dihydrochloride on Circus Movement Atrial Flutter in the Canine Sterile Pericarditis Model
Azimilide and Atrial Flutter. Introduction: The effects of a Class III agent, azimilide di‐hydrochloride, on atrial flutter circuits were studied in a functional model of single lo...
Numerical Analysis of Fan Transonic Stall Flutter
Numerical Analysis of Fan Transonic Stall Flutter
This paper describes numerical investigation of fan transonic stall flutter, especially focused on flutter bite. A transonic stall flutter occurs in high loaded condition at part r...
Transonic aeroelasticity design method with application to a wing
Transonic aeroelasticity design method with application to a wing
Abstract The transonic region is the most serious aeroelastic stability problem due to the existence of nonlinear factors such as shock waves, and it has been troubl...
The interaction between neural populations: Additive versus diffusive coupling
The interaction between neural populations: Additive versus diffusive coupling
AbstractModels of networks of populations of neurons commonly assume that the interactions between neural populations are via additive or diffusive coupling. When using the additiv...

Back to Top