Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Parameters characterizing the kinetics of the non-isothermal crystallization of polyamide 5,6 determined by differential scanning calorimetry

View through CrossRef
Abstract The non-isothermal crystallization behavior of polyamide 5,6 (PA56) was investigated by differential scanning calorimeter (DSC), and the non-isothermal crystallization kinetics were analyzed using the modified Avrami equation, the Ozawa model, and the method combining the Avrami and Ozawa equations. It was found that the Avrami method modified by Jeziorny could only describe the primary stage of non-isothermal crystallization kinetics of PA56, the Ozawa model failed to describe the non-isothermal crystallization of PA56, while the combined approach could successfully describe the non-isothermal crystallization process much more effectively. Kinetic parameters, such as the Avrami exponent, kinetic crystallization rate constant, relative degree of crystallinity, the crystallization enthalpy, and activation energy, were also determined for PA56.
Title: Parameters characterizing the kinetics of the non-isothermal crystallization of polyamide 5,6 determined by differential scanning calorimetry
Description:
Abstract The non-isothermal crystallization behavior of polyamide 5,6 (PA56) was investigated by differential scanning calorimeter (DSC), and the non-isothermal crystallization kinetics were analyzed using the modified Avrami equation, the Ozawa model, and the method combining the Avrami and Ozawa equations.
It was found that the Avrami method modified by Jeziorny could only describe the primary stage of non-isothermal crystallization kinetics of PA56, the Ozawa model failed to describe the non-isothermal crystallization of PA56, while the combined approach could successfully describe the non-isothermal crystallization process much more effectively.
Kinetic parameters, such as the Avrami exponent, kinetic crystallization rate constant, relative degree of crystallinity, the crystallization enthalpy, and activation energy, were also determined for PA56.

Related Results

Isothermal crystallization and melting behaviors of nano TiO2‐modified polypropylene/polyamide 6 blends
Isothermal crystallization and melting behaviors of nano TiO2‐modified polypropylene/polyamide 6 blends
AbstractTitanium dioxide (TiO2) nanoparticles were functionalized with toluene‐2,4‐diisocyanate and then polypropylene/polyamide 6/(PP/PA6) blends containing functionalized‐TiO2 we...
Effect of PTW on crystallization kinetics of toughened PBT/PC blends
Effect of PTW on crystallization kinetics of toughened PBT/PC blends
AbstractPoly(butylenes terephthalate) (PBT)/polycarbonate (PC)/poly(ethylenebutylacrylate- glycidyl methacrylate copolymer) (PTW) blends containing PTW as toughening modifier were ...
The effects of cellulose nanocrystal and dicumyl peroxide on the crystallization kinetics of polylactic acid
The effects of cellulose nanocrystal and dicumyl peroxide on the crystallization kinetics of polylactic acid
AbstractCellulose nanocrystals (CNCs) have been blended into polylactic acid (PLA) to improve the polymer's properties. The dispersion of CNC in the matrix has a strong influence o...
Crystallization Kinetics of Basalt Glass-Ceramics Produced from Olivine Basalt Rock
Crystallization Kinetics of Basalt Glass-Ceramics Produced from Olivine Basalt Rock
Glass-ceramics acquired from the melting of rocks have a vast application marketplace. In this study, an olivine basalt rock from Zhangjiakou in China was selected as a raw materia...
Nonisothermal Crystallization Kinetics by DSC: Practical Overview
Nonisothermal Crystallization Kinetics by DSC: Practical Overview
Providing a minimum of theory, this review focuses on practical aspects of analyzing the kinetics of nonisothermal crystallization as measured with differential scanning calorimetr...
Crystallization Kinetics of the Fe68Nb6B23Mo3 Glassy Ribbons Studied by Differential Scanning Calorimetry
Crystallization Kinetics of the Fe68Nb6B23Mo3 Glassy Ribbons Studied by Differential Scanning Calorimetry
Fe-based metallic glass has wide industrial application due to its unique mechanical behavior and magnetic properties. In the present work, the non-isothermal crystallization kinet...

Back to Top