Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Topic Evolution Analysis for Omics Data Integration in Cancers

View through CrossRef
One of the vital challenges for cancer diseases is efficient biomarkers monitoring formation and development are limited. Omics data integration plays a crucial role in the mining of biomarkers in the human condition. As the link between omics study on biomarkers discovery and cancer diseases is deepened, defining the principal technologies applied in the field is a must not only for the current period but also for the future. We utilize topic modeling to extract topics (or themes) as a probabilistic distribution of latent topics from the dataset. To predict the future trend of related cases, we utilize the Prophet neural network to perform a prediction correction model for existing topics. A total of 2,318 pieces of literature (from 2006 to 2020) were retrieved from MEDLINE with the query on “omics” and “cancer.” Our study found 20 topics covering current research types. The topic extraction results indicate that, with the rapid development of omics data integration research, multi-omics analysis (Topic 11) and genomics of colorectal cancer (Topic 10) have more studies reported last 15 years. From the topic prediction view, research findings in multi-omics data processing and novel biomarker discovery for cancer prediction (Topic 2, 3, 10, 11) will be heavily focused in the future. From the topic visuallization and evolution trends, metabolomics of breast cancer (Topic 9), pharmacogenomics (Topic 15), genome-guided therapy regimens (Topic 16), and microRNAs target genes (Topic 17) could have more rapidly developed in the study of cancer treatment effect and recurrence prediction.
Title: Topic Evolution Analysis for Omics Data Integration in Cancers
Description:
One of the vital challenges for cancer diseases is efficient biomarkers monitoring formation and development are limited.
Omics data integration plays a crucial role in the mining of biomarkers in the human condition.
As the link between omics study on biomarkers discovery and cancer diseases is deepened, defining the principal technologies applied in the field is a must not only for the current period but also for the future.
We utilize topic modeling to extract topics (or themes) as a probabilistic distribution of latent topics from the dataset.
To predict the future trend of related cases, we utilize the Prophet neural network to perform a prediction correction model for existing topics.
A total of 2,318 pieces of literature (from 2006 to 2020) were retrieved from MEDLINE with the query on “omics” and “cancer.
” Our study found 20 topics covering current research types.
The topic extraction results indicate that, with the rapid development of omics data integration research, multi-omics analysis (Topic 11) and genomics of colorectal cancer (Topic 10) have more studies reported last 15 years.
From the topic prediction view, research findings in multi-omics data processing and novel biomarker discovery for cancer prediction (Topic 2, 3, 10, 11) will be heavily focused in the future.
From the topic visuallization and evolution trends, metabolomics of breast cancer (Topic 9), pharmacogenomics (Topic 15), genome-guided therapy regimens (Topic 16), and microRNAs target genes (Topic 17) could have more rapidly developed in the study of cancer treatment effect and recurrence prediction.

Related Results

Benchmarking multi-omics integrative clustering methods for subtype identification in colorectal cancer
Benchmarking multi-omics integrative clustering methods for subtype identification in colorectal cancer
Abstract Background and objectives Colorectal cancer (CRC) represents a heterogeneous malignancy that has concerned global burden of incidence and mortality. The tradition...
Exploring the classification of cancer cell lines from multiple omic views
Exploring the classification of cancer cell lines from multiple omic views
Background Cancer classification is of great importance to understanding its pathogenesis, making diagnosis and developing treatment. The accumulation of extensive o...
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Are Cervical Ribs Indicators of Childhood Cancer? A Narrative Review
Abstract A cervical rib (CR), also known as a supernumerary or extra rib, is an additional rib that forms above the first rib, resulting from the overgrowth of the transverse proce...
Early-Onset Gastrointestinal Cancers
Early-Onset Gastrointestinal Cancers
ImportanceEarly-onset gastrointestinal (GI) cancer is typically defined as GI cancer diagnosed in individuals younger than 50 years. The incidence of early-onset GI cancer is risin...
Muon: multimodal omics analysis framework
Muon: multimodal omics analysis framework
AbstractAdvances in multi-omics technologies have led to an explosion of multimodal datasets to address questions ranging from basic biology to translation. While these rich data p...
Multi-omics Data Integration by Generative Adversarial Network
Multi-omics Data Integration by Generative Adversarial Network
Accurate disease phenotype prediction plays an important role in the treatment of heterogeneous diseases like cancer in the era of precision medicine. With the advent of high throu...
BiomiX, a User-Friendly Bioinformatic Tool for Automatized Multiomics Data Analysis and Integration
BiomiX, a User-Friendly Bioinformatic Tool for Automatized Multiomics Data Analysis and Integration
AbstractBiomiX addresses the data analysis bottleneck in high-throughput omics technologies, enabling the efficient, integrated analysis of multiomics data obtained from two cohort...
A benchmark study of deep learning-based multi-omics data fusion methods for cancer
A benchmark study of deep learning-based multi-omics data fusion methods for cancer
Abstract Background A fused method using a combination of multi-omics data enables a comprehensive study of complex biological processes and highlig...

Back to Top