Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Numerical Investigation of the Power Performance of the Vertical-Axis Wind Turbine with Endplates

View through CrossRef
An H-rotor vertical axis wind turbine (VAWTs) can operate independently in any wind direction, making it aerodynamically efficient and suitable to harness wind energy in low wind speed areas. The aerodynamic efficiency of VAWTs is highly dependent on the blade geometry, especially the blade tip. Tip vortices produced at the blade tips can negatively affect the VAWT’s aerodynamic efficiency. Adding endplates to the blade tips can minimize the effects of tip vortices on VAWTs. In this paper, several endplate designs are used to evaluate the effectiveness in improving the power coefficient, Cp of a VAWT at three different tip speed ratios (TSRs) using three-dimensional computational fluid dynamics (3D CFD) simulation. The power coefficients of VAWTs with endplates are compared with the baseline model with the same geometrical parameters where the baseline VAWT model is based on the experimental model from the literature. Since the focus of this study is on the blade tip design, a simplified 3D VAWT model is used where the supporting shaft and arms of the VAWT are excluded to reduce the needed computational capacity. Among the various endplate designs used in this study, the semi-circular inward endplate (ED3) with a diameter equivalent to 1.2 blade chord length showed the best improvement in the Cp which is by 7.45%, and 5.79% for at the TSRs of 2.19 and 2.58, respectively. The pressure difference on both sides of the blade was also examined. The results revealed that the endplate can prevent the flow from bypassing the blade tip, hence, preventing the occurrence of tip vortices while improving the aerodynamic efficiency near the blade tip, ultimately, improving the overall Cp of a VAWT.
Title: Numerical Investigation of the Power Performance of the Vertical-Axis Wind Turbine with Endplates
Description:
An H-rotor vertical axis wind turbine (VAWTs) can operate independently in any wind direction, making it aerodynamically efficient and suitable to harness wind energy in low wind speed areas.
The aerodynamic efficiency of VAWTs is highly dependent on the blade geometry, especially the blade tip.
Tip vortices produced at the blade tips can negatively affect the VAWT’s aerodynamic efficiency.
Adding endplates to the blade tips can minimize the effects of tip vortices on VAWTs.
In this paper, several endplate designs are used to evaluate the effectiveness in improving the power coefficient, Cp of a VAWT at three different tip speed ratios (TSRs) using three-dimensional computational fluid dynamics (3D CFD) simulation.
The power coefficients of VAWTs with endplates are compared with the baseline model with the same geometrical parameters where the baseline VAWT model is based on the experimental model from the literature.
Since the focus of this study is on the blade tip design, a simplified 3D VAWT model is used where the supporting shaft and arms of the VAWT are excluded to reduce the needed computational capacity.
Among the various endplate designs used in this study, the semi-circular inward endplate (ED3) with a diameter equivalent to 1.
2 blade chord length showed the best improvement in the Cp which is by 7.
45%, and 5.
79% for at the TSRs of 2.
19 and 2.
58, respectively.
The pressure difference on both sides of the blade was also examined.
The results revealed that the endplate can prevent the flow from bypassing the blade tip, hence, preventing the occurrence of tip vortices while improving the aerodynamic efficiency near the blade tip, ultimately, improving the overall Cp of a VAWT.

Related Results

Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine
Design and Performance Analysis of Distributed Equal Angle Spiral Vertical Axis Wind Turbine
Background: The wind turbine is divided into a horizontal axis and a vertical axis depending on the relative positions of the rotating shaft and the ground. The advantage of the ch...
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Background: In a wind farm, the wind speed of the downstream wind turbine will be lower than the wind speed of the upstream wind turbine due to the influence of the wake. Therefore...
Savonius Rotor for Offshore Wind Energy Conversion
Savonius Rotor for Offshore Wind Energy Conversion
Abstract Analysis of performance is presented for wind energy conversion by a Savonius type vertical axis rotor configured for generation of electrical power. The...
wLEACH: Real-Time Meteorological Data Based Wind LEACH
wLEACH: Real-Time Meteorological Data Based Wind LEACH
Introduction:Nowadays, Wireless Sensor Network (WSN) plays an important role in various fields. The limited power capability of the sensor nodes in the WSN brings constraints on th...
Six-Bucket Sim-Savonius Hybrid Turbine: Experimental Analysis and Performance Evaluation
Six-Bucket Sim-Savonius Hybrid Turbine: Experimental Analysis and Performance Evaluation
The growing awareness and apprehension regarding environmental issues have led to a surge in the demand for energy alternatives that are environmentally sustainable. Wind energy is...
Wake Alleviating Devices for Offshore Wind Turbines
Wake Alleviating Devices for Offshore Wind Turbines
The wake behind an offshore wind turbine can persist for several turbine diameters, so decreasing the space between wind turbines in an array leads to strong wake-turbine interacti...
Study and Analysis of Adaptive PI Control for Pitch Angle on Wind Turbine System
Study and Analysis of Adaptive PI Control for Pitch Angle on Wind Turbine System
In the current work, a study is proposed using the engineering program MATLAB through computer tests of a simulation model for modifying the tilt angle in wind turbines, with a stu...

Back to Top