Javascript must be enabled to continue!
CMAS corrosion behavior of a LaPO4 ceramic prepared by spark plasma sintering
View through CrossRef
AbstractAt high temperatures in gas turbines, traditional yttria stabilized zirconia materials fail prematurely owing to CMAS (calcium–magnesium–alumina–silicate) corrosion. Thus, new materials need to be developed urgently. In this study, LaPO4 powder was synthesized by chemical coprecipitation and heat treatment using lanthanum nitrate (La(NO3)3∙6H2O) and ammonium dihydrogen phosphate (NH4H2PO4) as starting materials, and LaPO4 bulk was prepared by spark plasma sintering. The surface of the LaPO4 bulk was coated with CMAS (CaO–MgO–Al2O3–SiO2) powder, and the CMAS interaction with the LaPO4 bulk at different temperatures was investigated. The phase and microstructure of the LaPO4 powder and bulk, as well as the CMAS corrosion products, were characterized using X‐ray diffraction and scanning electron microscope. The superior CMAS resistance of the LaPO4 bulk was attributed to the low wettability of LaPO4 by the CMAS melt and the development of dense layers of new corrosion products, which effectively protected the LaPO4 bulk from CMAS infiltration.
Title: CMAS corrosion behavior of a LaPO4 ceramic prepared by spark plasma sintering
Description:
AbstractAt high temperatures in gas turbines, traditional yttria stabilized zirconia materials fail prematurely owing to CMAS (calcium–magnesium–alumina–silicate) corrosion.
Thus, new materials need to be developed urgently.
In this study, LaPO4 powder was synthesized by chemical coprecipitation and heat treatment using lanthanum nitrate (La(NO3)3∙6H2O) and ammonium dihydrogen phosphate (NH4H2PO4) as starting materials, and LaPO4 bulk was prepared by spark plasma sintering.
The surface of the LaPO4 bulk was coated with CMAS (CaO–MgO–Al2O3–SiO2) powder, and the CMAS interaction with the LaPO4 bulk at different temperatures was investigated.
The phase and microstructure of the LaPO4 powder and bulk, as well as the CMAS corrosion products, were characterized using X‐ray diffraction and scanning electron microscope.
The superior CMAS resistance of the LaPO4 bulk was attributed to the low wettability of LaPO4 by the CMAS melt and the development of dense layers of new corrosion products, which effectively protected the LaPO4 bulk from CMAS infiltration.
Related Results
Magnetohydrodynamics enhanced radio blackout mitigation system for spacecraft during planetary entries
Magnetohydrodynamics enhanced radio blackout mitigation system for spacecraft during planetary entries
(English) Spacecraft entering planetary atmospheres are enveloped by a plasma layer with high levels of ionization, caused by the extreme temperatures in the shock layer. The charg...
Study Pitting Corrosion of P110 Steel by Electrochemical Frequency Modulation Technique and Coupled Multielectrode Array Sensor
Study Pitting Corrosion of P110 Steel by Electrochemical Frequency Modulation Technique and Coupled Multielectrode Array Sensor
By using the electrochemical frequency modulation (EFM) technique, coupled multielectrode array sensor (CMAS), and other corrosion research techniques, the pitting corrosion behavi...
Two-dimensional numerical analysis of differential concentration corrosion in seawater pipeline
Two-dimensional numerical analysis of differential concentration corrosion in seawater pipeline
Purpose
The purpose of this paper is to develop a new two-dimensional differential concentration corrosion mathematical model based on the knowledge that oxygen distribution on the...
Spark plasma sintering of transparent thick magnesium aluminate spinel ceramics
Spark plasma sintering of transparent thick magnesium aluminate spinel ceramics
Magnesium aluminate spinel is a promising material for optical application. It can be used as transparent armor, spacecraft windows, scanners, optical elements in night vision syst...
Evaluating Corrosion Inhibitors For Sour Gas Subsea Pipelines
Evaluating Corrosion Inhibitors For Sour Gas Subsea Pipelines
Abstract
Using subsea carbon steel pipelines to transport wet sour gas possesses huge challenges to the operators to maintain the high level of the Assets and Ope...
Microstructure and properties of FeSi6,5 soft magnetic materials prepared by spark plasma sintering
Microstructure and properties of FeSi6,5 soft magnetic materials prepared by spark plasma sintering
In this paper, FeSi6,5 (6.5 wt.% Si) soft magnetic materials have been prepared Via a Spark Plasma Sintering (SPS) technique at difference sintering temperatures in the range of 11...
Numerical simulation for carbon steel flow‐induced corrosion in high‐velocity flow seawater
Numerical simulation for carbon steel flow‐induced corrosion in high‐velocity flow seawater
PurposeThis paper aims to study flow‐induced corrosion mechanisms for carbon steel in high‐velocity flowing seawater and to explain corrosive phenomena.Design/methodology/approachA...
Experimental Investigation of the Corrosion Behavior of Friction Stir Welded AZ61A Magnesium Alloy Welds under Salt Spray Corrosion Test and Galvanic Corrosion Test Using Response Surface Methodology
Experimental Investigation of the Corrosion Behavior of Friction Stir Welded AZ61A Magnesium Alloy Welds under Salt Spray Corrosion Test and Galvanic Corrosion Test Using Response Surface Methodology
Extruded Mg alloy plates of 6 mm thick of AZ61A grade were butt welded using advanced welding process and friction stir welding (FSW) processes. The specimens were exposed to salt ...

