Javascript must be enabled to continue!
Analisis Model Fuzzy Time Series Chen, Cheng dan Singh pada Data Trend
View through CrossRef
Abstrak. Metode fuzzy time series adalah salah satu metode yang memanfaatkan kecerdasan buatan dengan kemampuan untuk bisa menangkap pola dari data yang telah ada sebelumnya. Kegiatan melakukan perbandingan pada model fuzzy time series sudah dilakukan oleh penelitian sebelumnya. Namun, pada penelitian sebelumnya hanya melakukan perbandingan model berdasarkan nilai akurasi prediksi pada data yang digunakan tanpa melihat perbedaan perhitungan dari masing-masing model. Untuk itu, penelitian ini mengkaji perbedaan model fuzzy time series Chen, Cheng, dan Singh, serta akurasinya pada peramalan data berpola trend. Model-model tersebut selanjutnya diaplikasikan untuk memprediksi data penumpang kereta api Jabodetabek periode Januari 2014 sampai Desember 2019. Hasil analisis model pada penelitian ini menunjukkan model Singh lebih baik dibandingkan model Chen. Model Cheng lebih baik dibandingkan model Chen. Hal tersebut sesuai dengan studi kasus pada data trend yang menghasilkan model Singh lebih akurat dibandingkan model Cheng dengan nilai MAPE model Singh sebesar 2,82%. Selanjutnya, model Cheng lebih baik dibandingkan dengan model Chen dengan nilai MAPE sebesar 5,7505% dan untuk nilai MAPE model Chen sebesar 7,2181%.
Abstract. The fuzzy time series method is one method that utilizes artificial intelligence with the ability to capture patterns from pre-existing data. Activities to compare fuzzy time series models have been carried out by previous research. However, previous studies only compared models based on the prediction accuracy value on the data used without seeing the difference in calculations from each model. For this reason, this study examines the differences in the Chen, Cheng, and Singh fuzzy time series models, as well as their accuracy in forecasting trend-patterned data. The models are then applied to predict Jabodetabek train passenger data for the period January 2014 to December 2019. The results of the model analysis in this study show that the Singh model is better than the Chen model. Cheng model is better than Chen model. This is in accordance with the case study on trend data which resulted in the Singh model being more accurate than the Cheng model with the Singh model MAPE value of 2,82%. Furthermore, the Cheng model is better than the Chen model with a MAPE value of 5,7505% and for the Chen model MAPE value of 7,2181%.
Title: Analisis Model Fuzzy Time Series Chen, Cheng dan Singh pada Data Trend
Description:
Abstrak.
Metode fuzzy time series adalah salah satu metode yang memanfaatkan kecerdasan buatan dengan kemampuan untuk bisa menangkap pola dari data yang telah ada sebelumnya.
Kegiatan melakukan perbandingan pada model fuzzy time series sudah dilakukan oleh penelitian sebelumnya.
Namun, pada penelitian sebelumnya hanya melakukan perbandingan model berdasarkan nilai akurasi prediksi pada data yang digunakan tanpa melihat perbedaan perhitungan dari masing-masing model.
Untuk itu, penelitian ini mengkaji perbedaan model fuzzy time series Chen, Cheng, dan Singh, serta akurasinya pada peramalan data berpola trend.
Model-model tersebut selanjutnya diaplikasikan untuk memprediksi data penumpang kereta api Jabodetabek periode Januari 2014 sampai Desember 2019.
Hasil analisis model pada penelitian ini menunjukkan model Singh lebih baik dibandingkan model Chen.
Model Cheng lebih baik dibandingkan model Chen.
Hal tersebut sesuai dengan studi kasus pada data trend yang menghasilkan model Singh lebih akurat dibandingkan model Cheng dengan nilai MAPE model Singh sebesar 2,82%.
Selanjutnya, model Cheng lebih baik dibandingkan dengan model Chen dengan nilai MAPE sebesar 5,7505% dan untuk nilai MAPE model Chen sebesar 7,2181%.
Abstract.
The fuzzy time series method is one method that utilizes artificial intelligence with the ability to capture patterns from pre-existing data.
Activities to compare fuzzy time series models have been carried out by previous research.
However, previous studies only compared models based on the prediction accuracy value on the data used without seeing the difference in calculations from each model.
For this reason, this study examines the differences in the Chen, Cheng, and Singh fuzzy time series models, as well as their accuracy in forecasting trend-patterned data.
The models are then applied to predict Jabodetabek train passenger data for the period January 2014 to December 2019.
The results of the model analysis in this study show that the Singh model is better than the Chen model.
Cheng model is better than Chen model.
This is in accordance with the case study on trend data which resulted in the Singh model being more accurate than the Cheng model with the Singh model MAPE value of 2,82%.
Furthermore, the Cheng model is better than the Chen model with a MAPE value of 5,7505% and for the Chen model MAPE value of 7,2181%.
Related Results
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Konstruksi Sistem Inferensi Fuzzy Menggunakan Subtractive Fuzzy C-Means pada Data Parkinson
Abstract. Fuzzy Inference System requires several stages to get the output, 1) formation of fuzzy sets, 2) formation of rules, 3) application of implication functions, 4) compositi...
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Generated Fuzzy Quasi-ideals in Ternary Semigroups
Here in this paper, we provide characterizations of fuzzy quasi-ideal in terms of level and strong level subsets. Along with it, we provide expression for the generated fuzzy quasi...
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
Background Several scholars defined the concepts of fuzzy soft set theory and their application on decision-making problem. Based on this concept, researchers defined the generalis...
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
New Approaches of Generalised Fuzzy Soft sets on fuzzy Codes and Its Properties on Decision-Makings
Background Several scholars defined the concepts of fuzzy soft set theory and their application on decision-making problem. Based on this concept, researchers defined the generalis...
Fuzzy Chaotic Neural Networks
Fuzzy Chaotic Neural Networks
An understanding of the human brain’s local function has improved in recent years. But the cognition of human brain’s working process as a whole is still obscure. Both fuzzy logic ...
Comparison of the Chen and Sinsgh’s Fuzzy Time Series Methods in Forecasting Farmer Exchange Rates in Indonesia
Comparison of the Chen and Sinsgh’s Fuzzy Time Series Methods in Forecasting Farmer Exchange Rates in Indonesia
Chen and Singh's Fuzzy Time Series Model is a forecasting method that uses the basi fuzzy logic in the process. The differences in the models are in the fuzzy logic relations. Che...
Perbaikan Kualitas Citra Menggunakan Metode Fuzzy Type-2
Perbaikan Kualitas Citra Menggunakan Metode Fuzzy Type-2
Image enhancement is applied to an image that has low contrast. Histogram Equalization (HE) is a general method used to improve the quality of an image. However, its drawback is f...
Fuzzy Semantic Models of Fuzzy Concepts in Fuzzy Systems
Fuzzy Semantic Models of Fuzzy Concepts in Fuzzy Systems
The fuzzy properties of language semantics are a central problem towards machine-enabled natural language processing in cognitive linguistics, fuzzy systems, and computational ling...

