Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Study on damage characteristics and application of gypsum pillar strengthened with FRP

View through CrossRef
AbstractThe instability of mine pillars has posed a serious threat to the safety of mines in China. In order to reduce the risk of pillar instability, this study used fiber-reinforced polymer (FRP) to reinforce gypsum specimens and conduct mechanical loading experiments. The study investigates the reinforcement effect of gypsum specimens with different height-diameter ratios and different FRP wrapping thicknesses, and analyzed the uneven distribution of constraint force along the height direction of FRP-reinforced gypsum specimens. An optimized wrapping method was proposed, and a stress–strain constitutive model for gypsum materials under optimized wrapping was established. By utilizing a statistical method based on strain energy density for heterogeneous rock damage identification, a simulation study was conducted on FRP-reinforced gypsum-like specimens. A comparative analysis was carried out with experimental results to verify the feasibility of the constitutive model. The research findings indicate that the use of FRP reinforcement significantly improves the uniaxial compressive strength and strain values of gypsum-like specimens. Moreover, the smaller the aspect ratio, the more pronounced the effect of FRP reinforcement on gypsum-like specimens. The stress–strain curve of FRP-reinforced gypsum-like specimens shows a distinct combination of curves and straight lines, which can be divided into two distinct stages based on different elastic moduli. The peak value of acoustic emission energy of FRP-reinforced gypsum specimens appears at the junction of the first and second stages of the stress–strain curve, and then the acoustic emission energy curve becomes relatively flat, with an increase in peak energy before failure. The constraint force acting on FRP-reinforced gypsum specimens exhibits an obvious uneven distribution along the height direction, based on which an optimized reinforcement scheme is proposed. Based on the established constitutive model, numerical simulation was conducted using real data from a specific mine. The research findings demonstrate that when the optimized reinforcement method is employed, the load-bearing capacity of the mine pillars was significantly enhanced. The maximum displacement was reduced by 33%, the maximum vertical stress was reduced by 3.2%, and the volume of the plastic zone was reduced by 39.87%.
Title: Study on damage characteristics and application of gypsum pillar strengthened with FRP
Description:
AbstractThe instability of mine pillars has posed a serious threat to the safety of mines in China.
In order to reduce the risk of pillar instability, this study used fiber-reinforced polymer (FRP) to reinforce gypsum specimens and conduct mechanical loading experiments.
The study investigates the reinforcement effect of gypsum specimens with different height-diameter ratios and different FRP wrapping thicknesses, and analyzed the uneven distribution of constraint force along the height direction of FRP-reinforced gypsum specimens.
An optimized wrapping method was proposed, and a stress–strain constitutive model for gypsum materials under optimized wrapping was established.
By utilizing a statistical method based on strain energy density for heterogeneous rock damage identification, a simulation study was conducted on FRP-reinforced gypsum-like specimens.
A comparative analysis was carried out with experimental results to verify the feasibility of the constitutive model.
The research findings indicate that the use of FRP reinforcement significantly improves the uniaxial compressive strength and strain values of gypsum-like specimens.
Moreover, the smaller the aspect ratio, the more pronounced the effect of FRP reinforcement on gypsum-like specimens.
The stress–strain curve of FRP-reinforced gypsum-like specimens shows a distinct combination of curves and straight lines, which can be divided into two distinct stages based on different elastic moduli.
The peak value of acoustic emission energy of FRP-reinforced gypsum specimens appears at the junction of the first and second stages of the stress–strain curve, and then the acoustic emission energy curve becomes relatively flat, with an increase in peak energy before failure.
The constraint force acting on FRP-reinforced gypsum specimens exhibits an obvious uneven distribution along the height direction, based on which an optimized reinforcement scheme is proposed.
Based on the established constitutive model, numerical simulation was conducted using real data from a specific mine.
The research findings demonstrate that when the optimized reinforcement method is employed, the load-bearing capacity of the mine pillars was significantly enhanced.
The maximum displacement was reduced by 33%, the maximum vertical stress was reduced by 3.
2%, and the volume of the plastic zone was reduced by 39.
87%.

Related Results

Analysis of Sticking and the Releasing Technology of the Composite Gypsum-Salt Rock in the Tarim Basin
Analysis of Sticking and the Releasing Technology of the Composite Gypsum-Salt Rock in the Tarim Basin
ABSTRACT: The Kuqa FoId-Thrust BeIt in Tarim Basin is verified as the most challenging geological structure for ultra-deep hydrocarbon development in China onshor...
e0344 The mechanism research of FRP inhibits endothelial cell apoptosis
e0344 The mechanism research of FRP inhibits endothelial cell apoptosis
Background Atherosclerosis is the most common cause of cardiovascular diseases in the world. Although the development of atherosclerosis appears to be the result ...
Dynamic fracture behavior analysis of FRP-strengthened concrete based on DIC and AE technology
Dynamic fracture behavior analysis of FRP-strengthened concrete based on DIC and AE technology
In order to analyze the fracture behavior of FRP-strengthened concrete beams under dynamic loads, three-point bending dynamic tests of FRP-strengthened concrete beam specimens with...
Damage localization in reinforced concrete beams strengthened with FRP sheets using modal strain energy method
Damage localization in reinforced concrete beams strengthened with FRP sheets using modal strain energy method
Civil structures are affected by many different factors from the environment, loads, aging of materials, … These factors are uncertain variables and affect the health of the struct...
Water-resistant fiber-reinforced gypsum cement-pozzolanic composites
Water-resistant fiber-reinforced gypsum cement-pozzolanic composites
Gypsum and gypsum-cement-pozzolanic composites are of significant interest as materials and products for building decoration. The current tendency to reduce the consumption of gyps...
Mechanical Properties of Fibre Reinforced Polymers under Elevated Temperatures: An Overview
Mechanical Properties of Fibre Reinforced Polymers under Elevated Temperatures: An Overview
Fibre-reinforced polymer (FRP) composite is one of the most applicable materials used in civil infrastructures, as it has been proven advantageous in terms of high strength and sti...
Safe functional reactive programming through dependent types
Safe functional reactive programming through dependent types
Functional Reactive Programming (FRP) is an approach to reactive programming where systems are structured as networks of functions operating on signals. FRP is based on the synchro...

Back to Top