Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Autumn Sea Ice Cover, Winter Northern Hemisphere Annular Mode, and Winter Precipitation in Eurasia

View through CrossRef
Abstract This paper examines the impacts of the previous autumn sea ice cover (SIC) on the winter Northern Hemisphere annular mode (NAM) and winter precipitation in Eurasia. The coherent variations among the Kara–Laptev autumn SIC, winter NAM, and Eurasian winter precipitation appear after the year 1982, which may prove useful for seasonal prediction of winter precipitation. From a physical point of view, the Kara–Laptev SIC and sea surface temperature (SST) anomalies develop in autumn and remain in winter. Given that winter NAM is characterized by an Arctic–midlatitude seesaw centered over the Barents Sea and Kara–Laptev Seas, it is closely linked to the Arctic forcing that corresponds to the Kara–Laptev sea ice increase (reduction) and the associated surface temperature cooling (warming). Moreover, based on both model simulations and observations, the diminishing Kara–Laptev sea ice does induce positive sea level pressure (SLP) anomalies over high-latitude Eurasia in winter, which is accompanied by a significant surface warming in northern Eurasia and cooling south of the Mediterranean. This surface air temperature (SAT) anomaly pattern facilitates increases of specific humidity in northern Eurasia with a major ridge extending southward along the East Asian coast. As a result, the anomalous Eurasian winter precipitation has a more zonal band structure.
American Meteorological Society
Title: Autumn Sea Ice Cover, Winter Northern Hemisphere Annular Mode, and Winter Precipitation in Eurasia
Description:
Abstract This paper examines the impacts of the previous autumn sea ice cover (SIC) on the winter Northern Hemisphere annular mode (NAM) and winter precipitation in Eurasia.
The coherent variations among the Kara–Laptev autumn SIC, winter NAM, and Eurasian winter precipitation appear after the year 1982, which may prove useful for seasonal prediction of winter precipitation.
From a physical point of view, the Kara–Laptev SIC and sea surface temperature (SST) anomalies develop in autumn and remain in winter.
Given that winter NAM is characterized by an Arctic–midlatitude seesaw centered over the Barents Sea and Kara–Laptev Seas, it is closely linked to the Arctic forcing that corresponds to the Kara–Laptev sea ice increase (reduction) and the associated surface temperature cooling (warming).
Moreover, based on both model simulations and observations, the diminishing Kara–Laptev sea ice does induce positive sea level pressure (SLP) anomalies over high-latitude Eurasia in winter, which is accompanied by a significant surface warming in northern Eurasia and cooling south of the Mediterranean.
This surface air temperature (SAT) anomaly pattern facilitates increases of specific humidity in northern Eurasia with a major ridge extending southward along the East Asian coast.
As a result, the anomalous Eurasian winter precipitation has a more zonal band structure.

Related Results

Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover
Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover
Abstract. Recent studies based on satellite observations have shown that there is a high statistical connection between the late winter (Feb-May) sea ice export out the Laptev Sea,...
Seasonal Arctic sea ice predictability and prediction
Seasonal Arctic sea ice predictability and prediction
Arctic sea ice plays a central role in the Earth’s climate. Changes in the sea ice on seasonal-to-interannual timescales impact ecosystems, populations and a growing number of stak...
Sea ice deformation and thickness in the Western Ross Sea
Sea ice deformation and thickness in the Western Ross Sea
<p>Sea ice cover is arguably the longest and best observed climate variable from space, with over four decades of highly reliable daily records of extent in both hemi...
Dissolved Neodymium Isotopes Trace Origin and Spatiotemporal Evolution of Modern Arctic Sea Ice
Dissolved Neodymium Isotopes Trace Origin and Spatiotemporal Evolution of Modern Arctic Sea Ice
<p>The lifetime and thickness of Arctic sea ice have markedly decreased in the recent past. This affects Arctic marine ecosystems and the biological pump, given that ...
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
Combined measurement of snow depth and sea ice thickness by helicopter EM bird in McMurdo Sound, Antarctica
Combined measurement of snow depth and sea ice thickness by helicopter EM bird in McMurdo Sound, Antarctica
<p>Snow on sea ice is a controlling factor for ocean-atmosphere heat flux and thus ice thickness growth, and surface albedo. Active and passive microwave remote sensi...
Viscous relaxation of Pluto's ice shell below Sputnik Planitia
Viscous relaxation of Pluto's ice shell below Sputnik Planitia
AbstractThe surface of Pluto is dominated by the Sputnik Planitia basin, possibly caused by an impact ~ 4 Gyr ago. To explain basin's unlikely position close to tidal axis with Cha...
Differences in Arctic sea ice simulations from various SODA3 data sets
Differences in Arctic sea ice simulations from various SODA3 data sets
<p>SODA (Simple Ocean Data Assimilation) is one of the ocean reanalysis data widely used in oceanographic research. The SODA3 dataset provides multiple ocean reanalys...

Back to Top