Javascript must be enabled to continue!
Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors
View through CrossRef
We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.
Title: Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors
Description:
We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques.
SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel.
A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection.
In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection.
Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.
Related Results
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN g...
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Systematic studies were performed on the influence of different cap layers of i-GaN, n-GaN, p-GaN and InGaN on AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on sapphi...
Carrier Localization at Atomic‐Scale Compositional Fluctuations in Single AlGaN Nanowires with Nano‐Cathodoluminescence
Carrier Localization at Atomic‐Scale Compositional Fluctuations in Single AlGaN Nanowires with Nano‐Cathodoluminescence
Considerable interest has been generated to develop highly efficient deep ultraviolet (DUV) emitters using AlGaN‐based alloys with direct bandgaps between 3.4 – 6.1 eV for a broad ...
Correlative Nanoscale Luminescence and Elemental Mapping in
InGaN/(Al)GaN
Dot‐in‐a‐wire Heterostructures
Correlative Nanoscale Luminescence and Elemental Mapping in
InGaN/(Al)GaN
Dot‐in‐a‐wire Heterostructures
Ternary InGaN compounds show great promise for light‐emitting diode (LED) applications because of bandgap energies (0.7 – 3.4 eV) that can be tailored to have emission wavelengths ...
Atomic‐Scale Compositional Fluctuations in Ternary III‐Nitride Nanowires
Atomic‐Scale Compositional Fluctuations in Ternary III‐Nitride Nanowires
Ternary InGaN and AlGaN alloys have been sought after for the application of various optoelectronic devices spanning a large spectral range between the deep ultraviolet (DUV) and i...
Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes
Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes
AbstractWe report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temp...
Base Transit Time in Abrupt GaN/InGaN/GaN and AlGaN/GaN/AlGaN HBTs
Base Transit Time in Abrupt GaN/InGaN/GaN and AlGaN/GaN/AlGaN HBTs
AbstractBase transit time, τb, in abrupt npn GaN/InGaN/GaN and AlGaN/GaN/AlGaN double heterojunction bipolar transistors (DHBTs) is reported. Base transit time strongly depends not...
Advanced AlGaN/GaN HEMT technology, design, fabrication and characterization
Advanced AlGaN/GaN HEMT technology, design, fabrication and characterization
Nowadays, the microelectronics technology is based on the mature and very well established silicon (Si) technology. However, Si exhibits some important limitations regarding its vo...

