Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Life cycle of an Archean subduction zone from initiation to arc–polarity reversal: Insights from the Zunhua ophiolitic mélange, North China Craton 

View through CrossRef
<p>Subduction initiation and arc–polarity reversal have rarely been recognized in the Archean rock record. We document Neoarchean subduction initiation, fore-arc magmatism, and an arc–polarity reversal event from the Zunhua structural belt along the eastern margin of the Central Orogenic Belt (COB) of the North China Craton (NCC). The Zunhua ophiolitic mélange within the Zunhua structural belt is a mappable unit characterized by blocks of metamorphosed harzburgite/lherzolite, podiform chromite –bearing dunite, pyroxenite, amphibolite, metabasites (basalt and diabase) with rare intermediate volcanics, chert, and tectonic lenses of banded iron formation in a strongly sheared metapelitic matrix. New geochronological and geochemical analyses of magmatic blocks within the ophiolitic mélange show that the crustal magmatic rocks were produced in a fore-arc region at 2.55–2.52 Ga from depletion of the harzburgitic–lherzolitic mantle tectonites. Chemical, petrological, and temporal links between the depleted mantle blocks, and the suite of magmatic blocks derived from partial melting and metasomatism of these depleted mantle blocks, unequivocally shows that they represent part of the same original Neoarchean fore-arc ophiolite suite. After formation and accretion in the oceanic realm, the mélange was emplaced on the continental margin of the Eastern Block between 2.52–2.50 Ga, and underwent two stages of metamorphism at ca. 2.48–2.46 Ga and 1.81 Ga. Metamorphosed intermediate–mafic volcanic blocks exhibit systematic successive geochemical variations, from MORB-like to volcanic arc-like, and the N-MORB-like meta-basalts show remarkable similarity with the subduction initiation-related Izu–Bonin–Mariana (IBM) fore-arc basalts. We suggest that the Zunhua fore-arc complex records continuous geodynamic processes from subduction initiation to arc magmatism. The Zunhua ophiolitic mélange is part of a ca. 2.5 Ga suture between an oceanic arc of the COB and Eastern Block of the NCC. After the arc–continent collision, an arc–polarity reversal event has been proposed to initiate a new eastward–dipping subduction zone on the western side of the COB. This arc–polarity reversal can be traced for more than 1,600 km along the length of the orogen, similar in scale, geometry, and duration between collision and polarity flip to the present-day arc–polarity reversal of the Sunda–Banda arc during its ongoing collision with the Australia continent. This indicates that a life cycle of an Archean subduction zone, including birth (subduction initiation), maturity (arc magmatism), death (arc-continent collision) and re-birth (arc–polarity reversal), is recorded in the Zunhua ophiolitic mélange, and the geodynamics of plate tectonics at the end of the Archean was similar to that of today.</p><p> </p>
Title: Life cycle of an Archean subduction zone from initiation to arc–polarity reversal: Insights from the Zunhua ophiolitic mélange, North China Craton 
Description:
<p>Subduction initiation and arc–polarity reversal have rarely been recognized in the Archean rock record.
We document Neoarchean subduction initiation, fore-arc magmatism, and an arc–polarity reversal event from the Zunhua structural belt along the eastern margin of the Central Orogenic Belt (COB) of the North China Craton (NCC).
The Zunhua ophiolitic mélange within the Zunhua structural belt is a mappable unit characterized by blocks of metamorphosed harzburgite/lherzolite, podiform chromite –bearing dunite, pyroxenite, amphibolite, metabasites (basalt and diabase) with rare intermediate volcanics, chert, and tectonic lenses of banded iron formation in a strongly sheared metapelitic matrix.
New geochronological and geochemical analyses of magmatic blocks within the ophiolitic mélange show that the crustal magmatic rocks were produced in a fore-arc region at 2.
55–2.
52 Ga from depletion of the harzburgitic–lherzolitic mantle tectonites.
Chemical, petrological, and temporal links between the depleted mantle blocks, and the suite of magmatic blocks derived from partial melting and metasomatism of these depleted mantle blocks, unequivocally shows that they represent part of the same original Neoarchean fore-arc ophiolite suite.
After formation and accretion in the oceanic realm, the mélange was emplaced on the continental margin of the Eastern Block between 2.
52–2.
50 Ga, and underwent two stages of metamorphism at ca.
2.
48–2.
46 Ga and 1.
81 Ga.
Metamorphosed intermediate–mafic volcanic blocks exhibit systematic successive geochemical variations, from MORB-like to volcanic arc-like, and the N-MORB-like meta-basalts show remarkable similarity with the subduction initiation-related Izu–Bonin–Mariana (IBM) fore-arc basalts.
We suggest that the Zunhua fore-arc complex records continuous geodynamic processes from subduction initiation to arc magmatism.
The Zunhua ophiolitic mélange is part of a ca.
2.
5 Ga suture between an oceanic arc of the COB and Eastern Block of the NCC.
After the arc–continent collision, an arc–polarity reversal event has been proposed to initiate a new eastward–dipping subduction zone on the western side of the COB.
This arc–polarity reversal can be traced for more than 1,600 km along the length of the orogen, similar in scale, geometry, and duration between collision and polarity flip to the present-day arc–polarity reversal of the Sunda–Banda arc during its ongoing collision with the Australia continent.
This indicates that a life cycle of an Archean subduction zone, including birth (subduction initiation), maturity (arc magmatism), death (arc-continent collision) and re-birth (arc–polarity reversal), is recorded in the Zunhua ophiolitic mélange, and the geodynamics of plate tectonics at the end of the Archean was similar to that of today.
</p><p> </p>.

Related Results

Ballistic landslides on comet 67P/Churyumov–Gerasimenko
Ballistic landslides on comet 67P/Churyumov–Gerasimenko
<p><strong>Introduction:</strong></p><p>The slow ejecta (i.e., with velocity lower than escape velocity) and l...
Case Study of Geological Risk Factors for Earthquake Hazard Mapping in the South Eastern Korea
Case Study of Geological Risk Factors for Earthquake Hazard Mapping in the South Eastern Korea
  In order to interpret geological risk assessment for Earthquake hazard by mapping work, since geotechnical...
L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
L᾽«unilinguisme» officiel de Constantinople byzantine (VIIe-XIIe s.)
&nbsp; <p>&Nu;ί&kappa;&omicron;&sigmaf; &Omicron;&iota;&kappa;&omicron;&nu;&omicron;&mu;ί&delta;&eta;&sigmaf;</...
The use of ERDDAP in a self-monitoring and nowcast hazard alerting coastal flood system
The use of ERDDAP in a self-monitoring and nowcast hazard alerting coastal flood system
&lt;div&gt; &lt;p&gt;In the UK,&amp;#160;&amp;#163;150bn of assets and 4 million people are at risk from coastal flooding. With reductions in public funding...
Morphometry of an hexagonal pit crater in Pavonis Mons, Mars
Morphometry of an hexagonal pit crater in Pavonis Mons, Mars
&lt;p&gt;&lt;strong&gt;Introduction:&lt;/strong&gt;&lt;/p&gt; &lt;p&gt;Pit craters are peculiar depressions found in almost every terrestria...
Analysis of lava flow features on Venus for radar sounder simulations
Analysis of lava flow features on Venus for radar sounder simulations
IntroductionPrevious missions to Venus depicted an environment dominated by volcanic landforms and hostile atmospheric conditions. The surface was imaged by the Magellan mission, a...
Cometary Physics Laboratory: spectrophotometric experiments
Cometary Physics Laboratory: spectrophotometric experiments
&lt;p&gt;&lt;strong&gt;&lt;span dir=&quot;ltr&quot; role=&quot;presentation&quot;&gt;1. Introduction&lt;/span&gt;&lt;/strong&...
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
North Syrian Mortaria and Other Late Roman Personal and Utility Objects Bearing Inscriptions of Good Luck
<span style="font-size: 11pt; color: black; font-family: 'Times New Roman','serif'">&Pi;&Eta;&Lambda;&Iota;&Nu;&Alpha; &Iota;&Gamma;&Delta...

Back to Top