Javascript must be enabled to continue!
High-Performance MEMS Oxygen Sensors Based on Au/TiO2 Films
View through CrossRef
High-performance microelectromechanical system (MEMS) oxygen sensors were realized by successful preparation of Au nanofilms over TiO2 thin films through successive sputtering on commercial MEMS microhotplates. Oxygen sensing performance of 3 and 6 nm thick Au over TiO2 thin films were compared with that of pure TiO2 thin films. It was shown that 6 nm thick Au over TiO2 thin films have the best sensitivity toward oxygen. The prepared TiO2 thin films were characterized using SEM, EDS, XPS, and a gas testing instrument. The results show that Au decoration has little influence on the surface morphologies of TiO2 thin films. However, Au decoration has a strong influence on the surface properties of the composite films. The favorable performance of 6 nm Au-doped TiO2 thin films is attributed to factors such as catalytical performance, height of Schottky contact, and number of oxygen vacancies. This work makes contributions to low power consumption and high-performance oxygen sensors for Internet of Things applications.
Title: High-Performance MEMS Oxygen Sensors Based on Au/TiO2 Films
Description:
High-performance microelectromechanical system (MEMS) oxygen sensors were realized by successful preparation of Au nanofilms over TiO2 thin films through successive sputtering on commercial MEMS microhotplates.
Oxygen sensing performance of 3 and 6 nm thick Au over TiO2 thin films were compared with that of pure TiO2 thin films.
It was shown that 6 nm thick Au over TiO2 thin films have the best sensitivity toward oxygen.
The prepared TiO2 thin films were characterized using SEM, EDS, XPS, and a gas testing instrument.
The results show that Au decoration has little influence on the surface morphologies of TiO2 thin films.
However, Au decoration has a strong influence on the surface properties of the composite films.
The favorable performance of 6 nm Au-doped TiO2 thin films is attributed to factors such as catalytical performance, height of Schottky contact, and number of oxygen vacancies.
This work makes contributions to low power consumption and high-performance oxygen sensors for Internet of Things applications.
Related Results
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Alternative Entrances: Phillip Noyce and Sydney’s Counterculture
Phillip Noyce is one of Australia’s most prominent film makers—a successful feature film director with both iconic Australian narratives and many a Hollywood blockbuster under his ...
(Invited) A 1-mG MEMS Sensor
(Invited) A 1-mG MEMS Sensor
MEMS (microelectromechanical systems) technology has contributed substantially to the miniaturization of inertial sensors, such as accelerometers and gyroscopes [1]. Nowadays, MEMS...
Photocatalytic Degradation of Gaseous Benzene Using Cu/Fe-Doped TiO2 Nanocatalysts under Visible Light
Photocatalytic Degradation of Gaseous Benzene Using Cu/Fe-Doped TiO2 Nanocatalysts under Visible Light
Visible-light-enhanced TiO2 nanocatalysts doped with Cu and Fe were synthesized using the sol–gel method to investigate their performance in degrading gaseous benzene. The structur...
The Hydrothermal Synthesis of TiO2-GO with Enhance Photocatalytic Activity
The Hydrothermal Synthesis of TiO2-GO with Enhance Photocatalytic Activity
A composite material consisting of titanium dioxide and graphene oxide (TiO2–GO) was synthesized through a hydrothermal reaction. This reaction involved the use of Ti(SO4)2 in an e...
RELIABILITY OF MEMS ACCELEROMETERS FOR INSTRUMENTAL INTENSITY MAPPING OF EARTHQUAKES
RELIABILITY OF MEMS ACCELEROMETERS FOR INSTRUMENTAL INTENSITY MAPPING OF EARTHQUAKES
This work investigates suitability of low cost Micro-Electro Mechanical System (MEMS) sensors in strong motion related studies, particularly in shaking intensity networks. Two type...
Performance comparison of dye-sensitized solar cells by using different metal oxide- coated TiO2 as the photoanode
Performance comparison of dye-sensitized solar cells by using different metal oxide- coated TiO2 as the photoanode
In order to increase the conversion efficiency of dye-sensitized solar cells, TiO2 photoanode surface is often covered with a metal oxide layer to form a core-shell composite struc...
Adsorption and Photocatalytic Mineralization of Bromophenol Blue Dye with TiO2 Modified with Clinoptilolite/Activated Carbon
Adsorption and Photocatalytic Mineralization of Bromophenol Blue Dye with TiO2 Modified with Clinoptilolite/Activated Carbon
This study presents a hybridized photocatalyst with adsorbate as a promising nanocomposite for photoremediation of wastewater. Photocatalytic degradation of bromophenol blue (BPB) ...
Spray Coated Nanocellulose Films Productions, Characterization and Application
Spray Coated Nanocellulose Films Productions, Characterization and Application
Nanocellulose (NC) is a biodegradable, renewable and sustainable material. It has strong potential to use as a functional material in various applications such as barriers, coating...

